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Abstract

We introduce sparsity detection and estimation in main effect matrix factor models for matrix-

valued time series. A carefully chosen set of identification conditions for the common component

and the potentially nonstationary main effects is proposed to strengthen the interpretations of sparse

main effects, while estimators of all model components are presented. Sparse estimation of the latent

main effects is proposed using a doubly adaptive fused lasso estimation to allow for sparse sub-block

detection, with theoretical guarantees and rates of convergence spelt out for the final estimators. Sparse

block consistency for the main effects is also proved as a result. A realized Mallow’s Cp is developed

for tuning parameter selection, with practical implementation described. Simulation experiments are

performed under a variety of settings, showing our proposed estimators work well. A set of NYC taxi

traffic data is analyzed, clearly showing the effects of Covid-19 lockdown, with prolonged sparse main

effects detected.
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1 Introduction

With the rapid development of computational hardware and technology for big data, researchers obtain

and analyze datasets that are ever larger in size and complexity. This leads to significant advances in the

area of factor analysis, which is a useful tool in multivariate analysis with a wide range of applications in

psychology (McCrae and John, 1992), biology (Hirzel et al., 2002; Hochreiter et al., 2006), economics and

finance (Fama and French, 1993; Stock and Watson, 2002a,b), to name but a few areas. In particular, since

the early work of Chamberlain and Rothschild (1983), approximate factor models have been well studied

over the past few decades; see e.g. Bai and Ng (2002), Pan and Yao (2008), Lam et al. (2011), and the

references therein.

1.1 Related Literature and Motivation

To facilitate interpretation of the estimated factor structure, one of the major solutions is through spar-

sity, which is not new in time series analysis. Sparsity can be imposed on the data covariance matrix

(Bickel and Levina, 2008) and the noise covariance matrix (Fan et al., 2013), among many other methods.

See also Section 1.4 in Uematsu and Yamagata (2023a) for a discussion on sparse principal components.

More recently, researchers are interested in studying the sparsity in factor loadings (Freyaldenhoven, 2022;

Uematsu and Yamagata, 2023a), which is a concept closely related to factor strength as discussed in Sec-

tion 7 in Barigozzi and Hallin (2024). In fact, various forms of sparsity in factor loadings are discussed in

the literature. An example is a multilevel/group factor model (Wang, 2008; Hu et al., 2025), where each

observed vector xs
t ∈ Rps (t = 1, . . . , T , s = 1, . . . , S) can be represented by xs

t = Asgt+Bsfst +est , with gt

and fst called the global and group-specific factors respectively, As, Bs their corresponding factor loading

matrices, and est the noise. The model can be rewritten as




x1
t

x2
t

...

xS
t




=




A1 B1 0 . . . 0

A2 0 B2 . . . 0

...
...

...
. . .

...

AS 0 0 . . . BS







gt

f1t
...

fSt




+




e1t

e2t
...

eSt




,

so that the factor loading matrix has a specific sparse structure, which is based on a priori data grouping.

Another similar example of sparse loadings is models of the above kind, except that the membership of

the data is unknown; see Ando and Bai (2017) and Zhang et al. (2024). In addition to block sparsity

due to grouping, Uematsu and Yamagata (2023a,b) studies a sparsity-induced weak factor model under

rather restricted conditions to address the identification issue that sparse factor loadings are generally
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not rotation-invariant. Wei and Zhang (2024) further investigates the near-sparsity preservation property

of the estimated loadings. Other related examples include Fan et al. (2023) which relates sparsity and

factor models through factor-augmented regression, and Mosley et al. (2024) which focuses on sparsity in

the loading matrix of dynamic factor models. For Bayesian methods on sparsity in factor structures, see

Zhang et al. (2025) and the references therein.

Despite the growing literature from the above discussion, all of them focus only on vector-valued time

series. As first proposed by Wang et al. (2019) and later studied in broader literature (e.g. Yu et al., 2022;

He et al., 2024), matrix factor models have become powerful tools for studying economic and financial data,

leading to more insightful interpretations and improved estimations. In particular, a series of matrices Xt,

t ∈ {1, . . . , T } =: [T ], is observed and admits the decomposition Xt = ArFtA
⊺

c +Et, where Ar,Ac are the

row and column factor loading matrices respectively, and Ft is the core factor matrix. Although one may

write vec(Xt) = (Ac ⊗Ar)vec(Ft) + vec(Et), where vec(Xt) is the stacking of the columns of Xt into a

vector, and thus estimate a factor model for the vectorized data with sparsity, such an approach is neither

efficient nor appropriate. For instance, the global inference step in Uematsu and Yamagata (2023b) is now

inapplicable as it neglects the Kronecker product structure in the factor loading matrix.

This paper provides an alternative solution to address sparsity in matrix factor models. It is worth

pointing out that it remains a challenge to address the interaction between rows and columns in factor

modeling for matrix-valued time series, for which very limited work has been done. An example is He et al.

(2023) where a specification test is proposed. Another attempt is by Lam and Cen (2024), which generalizes

the Tucker-decomposition factor model to a Main Effect Factor Model (MEFM), significantly improving

model interpretability. In particular, given a matrix observation Xt ∈ R

p×q for t = 1, . . . , T , MEFM

decomposes each Xt as

Xt = µt1p1
⊺

q +α∗
t1

⊺

q + 1pβ
∗⊺
t +ArFtA

⊺

c +Et, (1.1)

where ArFtA
⊺

c is akin to the common component in traditional matrix factor models with Ft ∈ Rkr×kc ,

and µt, α
∗
t , β

∗
t are the time-varying grand mean, row and column effects respectively. In particular, the

identification of parameters, e.g. main effects and factor loadings, relies heavily on the condition

1⊺

pα
∗
t = 0, 1⊺

qβ
∗
t = 0, 1⊺

pAr = 0, 1⊺

qAc = 0. (1.2)

Lam and Cen (2024) shows that any Tucker-decomposition matrix factor model can be rewritten into

MEFM, whereas the converse generally requires far more factors and can still be empirically inferior. Note

that for any fixed row (resp. column), the contribution of α∗
t (resp. β∗

t ) towards the observed Xt is the

same. Hence row or column structures are solely featured by the main effects, and the interaction between
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rows and columns by the common component.

1.2 Main Contributions

As a first in the literature, we consider MEFM with sparsity in the main effects and develop methods to

recover the structure for more natural and better interpretation of the main effects over time. A special

(and sparsest) case is the traditional matrix factor model where all main effects are zero. A period of

non-zero main effects in relation to other periods of zero main effects can indicate a significant change in

circumstances for the rows or columns in question.

However, the identification condition (1.2) gives rise to complications since all entries in the main

effects are jointly constrained by (1.2). For instance, suppose Xt records the values of economic indicators

with countries indexed by rows and indicators indexed by columns. If a small group of countries form an

economic entity with pervasive effects on each indicator of the member countries, then the row main effects

vector α∗
t is sparse with non-zero entries corresponding to those member countries. Yet (1.2) implies that

either some member countries have opposite effects which are unnatural, or some non-member countries

have non-zero effects which are not realistic under this scenario. Therefore, it is crucial to develop a new,

reasonable identification that allows us to consider sparsity in the main effects. Our method takes advantage

of the data format and we develop different sets of identification conditions, significantly enhancing the

interpretability of our model.

1.3 Notations and Organizations

We use the lower-case or capital letter, bold lower-case letter, and bold capital letter, i.e., a or A, a, A, to

denote a scalar, a vector, and a matrix respectively. We also use ai, Ai,j ,Ai·,A·i to denote, respectively,

the i-th element of a, the (i, j)-th element of A, the i-th row vector (as a column vector) of A, and the

i-th column vector of A. We use ◦ to denote the Hadamard product and ⊗ the Kronecker product; a ≍ b

represents a = O(b) and b = O(a); and a ∨ b := max{a, b}. A random variable X is sub-Gaussian with

variance proxy σ2, denoted as X ∼ subG(σ2), if E[exp{s(X − E[X ])}] ≤ exp(s2λ2/2) for all s ∈ R.

A random variable X is sub-exponential with parameter λ, denoted as X ∼ subE(λ), if E[exp{s(X −

E[X ])}] ≤ exp(s2λ2/2) for all |s| ≤ 1/λ. Given a positive integer a, define [a] := {1, . . . , a}. We define 1a

as a vector of ones with length a, and Ma = Ia − a−11a1
⊺

a. The i-th largest eigenvalue of a matrix A is

denoted by λi(A); A⊺ denotes the transpose of A; and diag({A1, . . . ,An}) represents the block diagonal

matrix with matrices {A1, . . . ,An} on the diagonal. For a given set, we denote by |·| its cardinality. We use

‖·‖ to denote the spectral norm of a matrix or the L2 norm of a vector, and ‖·‖F to denote the Frobenius

norm of a matrix. We use ‖ · ‖max to denote the maximum absolute value of the elements in a vector or a
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matrix. The notations ‖ · ‖1 and ‖ · ‖∞ denote the L1 and L∞-norm of a matrix respectively, defined by

‖A‖1 := maxj
∑

i |(A)ij | and ‖A‖∞ := maxi
∑

j |(A)ij |. Without loss of generality, we always assume the

eigenvalues of a matrix are arranged by descending orders, and so are their corresponding eigenvectors.

The rest of this paper is organized as follows. The new model identification is detailed in Section 2,

followed by parameter estimation. Section 3 presents the main assumptions and theoretical results of the

estimators. Section 4 discusses the implementation of the algorithm and hyperparameter tuning based on

a modified Cp statistic. Lastly, numerical results are shown in Section 5, where a real dataset on taxi traffic

is also analyzed. Conclusion of the paper is in Section 6. All theoretical proofs and additional information

are relegated to the supplement.

2 Model and Estimation

2.1 A matrix factor model with sparse time-varying main effects

Based on (1.1), we propose to study sparsity in MEFM under a new, simple identification condition which

naturally allows for sparse main effects. Consider mean-zero matrix-valued observations Xt ∈ R

p×q for

t ∈ [T ], each admits an MEFM representation such that

Xt = µt1p1
⊺

q +α∗
t1

⊺

q + 1pβ
∗⊺
t +Ct +Et, (2.1)

where µt is a scalar coined as the base effect, α∗
t ∈ Rp and β∗

t ∈ Rq are respectively the row and column

main effects with potentially many zero entries (will be further explained later), Ct = ArFtA
⊺

c is the

common component, Ar ∈ Rp×kr and Ac ∈ Rq×kc are the row and column factor loading matrices, Ft is

the core factor matrix, and Et is the noise. More importantly, we impose the following for identification:

(IC1) (Identification) For any t ∈ [T ], we assume A⊺

r1p = 0, A⊺

c1q = 0, min{α∗
t } = 0 and min{β∗

t } = 0.

Unlike (1.2), (IC1) identifies each main effect on one or some indices where the main effects vanish,

and effectively handles the example of economic indicators in Section 1. The interpretation of main effects

is similar to those in Lam and Cen (2024) in the sense that, from α∗
t1

⊺

q , the contribution of α∗
t towards Xt

only varies over different rows and remains the same over columns. Such an interpretation holds similarly

for the column effects. Hence the main effects specialize in row-wise and column-wise contribution, while

the common component Ct picks up the interaction between rows and columns. Due to (IC1), the main

effects should be read sign-less, i.e., as a magnitude. Another subtlety lies in µt which is called grand mean

by Lam and Cen (2024) where µt = (pq)−11⊺

p(Xt − Et)1q, but is analogous to a baseline level (and hence

5



termed as the base effect) using our (IC1) since µt + p−11⊺

pα
∗
t + q−11⊺

qβ
∗
t = (pq)−11⊺

p(Xt −Et)1q with all

main effect entries non-negative.

With (1.2), Lam and Cen (2024) first identifies µt, so that the row and column main effects can be

subsequently identified. This is impossible under our identification in Condition (IC1), so we take another

route by identifying the main effects first. This again indicates that (IC1), in spite of its simple form, is a

non-trivial extension of the identification (1.2). In fact, (IC1) is a special case among a large class of valid

identification conditions to MEFM; see Remark 2 in Section 3.2 for more details. Besides being identifiable

with (IC1), it is unsurprising that model (2.1) is more general than the Tucker-decomposition matrix factor

model, just as in Lam and Cen (2024). We present these results in the following theorem and the proof is

included in the supplement.

Theorem 1 Under Assumption (IC1), it holds for (2.1) that: (i) each µt, α
∗
t , β

∗
t and Ct can be identified;

(ii) if Xt follows the Tucker-decomposition matrix factor model Xt = ÁrFtÁ
⊺

c +Et with full rank loadings

Ár and Ác, then Xt also follows (2.1) with the resulting parameters satisfying (IC1).

To facilitate interpretation of the main effects, we consider that, for each cross-sectional unit, its main

effects are sparse in certain periods. Formally, consider the row effects {α∗
t}t∈[T ], and for any i ∈ [p], we

define the sparse block as Sα,i = {t : α∗
t,i = 0}, and the dense block Bα,i = [T ] \ Sα,i. The sparse and

dense blocks for the column main effects are defined similarly, denoted as Sβ,j and Bβ,j respectively. Note

that both Sα,i and Sβ,j can be potentially empty. From a data generating point of view, the sparse blocks

should be viewed as non-random sets of timestamps where the corresponding main effects vanish, and the

dense blocks are the remaining period.

For illustration, consider again the example of economic indices from Section 1, where each row cor-

responds to one country and hence the time series {α∗
t,i} represents the country-i’s effect which could

disappear when the country’s economy goes down for instance. To strengthen the idea that the sparsity

can be piecewise, i.e., zeros in the main effects can be consecutive in timestamps, we address this by in-

corporating a total variation loss, which we defer to Section 2.2. Note that there could be singular zeros

which live in between non-zero main effects, so that our framework balances between interpretability and

generality. To summarize, the benefit of such a sparsity framework is at least two-fold:

1. With piecewise zeros, the main effects can be understood more easily by practitioners; on the other

hand, singular zeros potentially imply influential events and merit further investigation.

2. Allowing for general non-zeros retains adequate flexibility, compared to e.g. piecewise constants which

is restricted and may not be realistic. Moreover, the dense blocks are able to feature the important

patterns in the observed matrix time series, such as high volatility for financial return data.
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2.2 Regularized estimation

We discuss the estimation of model parameters in (2.1) in this subsection. First, we may utilize Condi-

tion (IC1) to subsequently estimate the factor structure in Xt for each t ∈ [T ]. By left-multiplying 1⊺

p and

right-multiplying 1q on Xt, we obtain

1⊺

pXt1q = pqµt + q1⊺

pα
∗
t + p1⊺

qβ
∗
t + 1⊺

pEt1q,

according to (2.1). We can also right-multiply 1q or left-multiply 1⊺

p on Xt to respectively obtain

Xt1q = 1p(qµt + 1⊺

qβ
∗
t ) + qα∗

t +Et1q, X
⊺

t 1p = 1q(pµt + 1⊺

pα
∗
t ) + pβ∗

t +E
⊺

t 1p.

Thus, together with Condition (IC1), we may obtain the initial estimators for the main effects and hence

the base effect as

α̃t := q−1Xt1q − q−11p min{Xt1q}, (2.2)

β̃t := p−1X
⊺

t 1p − p−11q min{X⊺

t 1p}, (2.3)

µ̃t := (pq)−11⊺

pXt1q − p−11⊺

pα̃t − q−11⊺

q β̃t. (2.4)

Note that due to rotational indeterminacy, we cannot identify the loading matrices Ar and Ac exactly, but

only their column spaces. To take into account potentially heterogeneous weak factors (e.g. Lam and Yao,

2012; Cen and Lam, 2025), we normalize the loadings and the core factor asQr = ArZ
−1/2
r , Qc = AcZ

−1/2
c ,

and FZ,t = Z
1/2
r FtZ

1/2
c , with Zr and Zc from Assumption (L1); see more details in Section 3.1. Since

Ct = QrFZ,tQ
⊺

c , we may equivalently estimate the normalized parameters. To this end, define the matrix

L̃t := Xt − µ̃t1p1
⊺

q − α̃t1
⊺

q − 1pβ̃
⊺

t . (2.5)

Then the estimator for the normalized row loading matrix, denoted by Q̂r, is defined as the eigenvector

matrix corresponding to the kr largest eigenvalues of the matrix T−1
∑T

t=1 L̃tL̃
⊺

t . Similarly, the normalized

column loading matrix estimator Q̂c is the eigenvector matrix corresponding to the kc largest eigenvalues

of T−1
∑T

t=1 L̃
⊺

t L̃t. Lastly, The core factor and the common component can be estimated by

F̂Z,t := Q̂⊺

r L̃tQ̂c, Ĉt := Q̂⊺

r F̂tQ̂c = Q̂rQ̂
⊺

rXtQ̂cQ̂
⊺

c .

Next, our goal is to recover the sparse blocks for the row and column main effects. Inspired by the
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Lasso (Tibshirani, 1996), we may employ an L1 penalty to select the non-zero main effects. Nevertheless,

such a regularization penalizes uniformly on each main effect value, potentially leading to over- or under-

penalization which, in our scenario, fails block consistency (i.e., sparse blocks and dense blocks are estimated

exactly as the true sets). To circumvent the restricted yet necessary irrepresentable condition in Lasso,

Zou (2006) proposes to adaptively penalize the magnitude of estimators by reweighing the L1 loss by the

inverse of some well-behaved initial estimators. This adaptive Lasso method enlightens us to consider a

loss function such that, for i ∈ [p],

L◦(α1,i, . . . , αT,i) :=
1

2

T∑

t=1

(
α∗
t,i − αt,i

)2
+ λα

T∑

t=1

γα,t,i
∣∣αt,i

∣∣, (2.6)

where γα,t,i = 1/α̃t,i and λα is the tuning parameter. The estimators obtained by minimizing (2.6) are

theoretically solid, but suffer from two flaws in practice. First, as a part of the latent MEFM representation,

the row main effects cannot be directly observed, and hence all the α∗
t,i’s in (2.6) are unavailable. Secondly,

even if the true sparse block contains consecutive indices, the resulted main effect estimators from (2.6) do

not favor piecewise sparsity, thus undermining the interpretation empirically.

To address the first concern above, we leverage the initial estimator α̃t,i which turns out to be an

appropriate proxy to α∗
t,i under very general assumptions; see Assumption (R2) in Section 3.1. To promote

smoothness in the estimator, we further include a total variation loss in the objective function, which is

akin to the fused Lasso method (Tibshirani et al., 2005; Rinaldo, 2009). Different from the traditional

use of the total variation loss, we borrow the idea from adaptive Lasso again and reweigh the penalty

by 1/max{α̃t,i, α̃t−1,i}, so that the smoothness is mainly encouraged on the sparse blocks. To this end,

we introduce a new regularized estimator called the Doubly Adaptive Fused Lasso (DAFL) estimator,

detailed as follows. For each i ∈ [p], the DAFL estimator for the i-th row effect, {α̂t,i}t∈[T ], is obtained by

minimizing the penalized loss

L(α1,i, . . . , αT,i) :=
1

2

T∑

t=1

(
α̃t,i − αt,i

)2
+ λα

T∑

t=2

uα,t,i

∣∣αt,i − αt−1,i

∣∣+ λα

T∑

t=1

γα,t,i
∣∣αt,i

∣∣, (2.7)

where uα,t,i = 1/max{α̃t,i, α̃t−1,i}, and λα and γα,t,i are defined in (2.6). Note that L(·) depends on

{α̃t,i}t∈[T ], which is not implied from our notation for the ease of presentation. The DAFL estimators for

the column effects can be obtained similarly, denoted by {β̂t,j}t∈[T ] for j ∈ [q]. Then the sparse block

estimators and their corresponding dense block estimators for the row and column main effects can be
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respectively defined as follows, for i ∈ [p], j ∈ [q],

Ŝα,i := {t : α̂t,i ≤ 0}, Ŝβ,j := {t : β̂t,j ≤ 0},

B̂α,i := [T ] \ Ŝα,i, B̂β,j := [T ] \ Ŝβ,j .

(2.8)

Note that we expect the DAFL estimators to be non-negative since the initial estimators are non-negative

by how they are constructed. Hence, Ŝα,i and Ŝβ,j should technically correspond to the periods where α̂t,i

and β̂t,j are exactly zero, which might not hold empirically due to outliers or over-penalization. We thus

define the sparse blocks as in (2.8) to address this; see more details in Remark 1.

Lastly, we construct the final estimators for the main effects by replacing all entries in α̃t and β̃t by

zero except for those according to the estimated dense blocks. That is, for each t ∈ [T ], i ∈ [p], j ∈ [q],

α̃B
t,i :=





α̃t,i, t ∈ B̂α,i;

0, otherwise.

, β̃B
t,j :=





β̃t,j , t ∈ B̂β,j;

0, otherwise.

This unconventional step is to compensate for the use of e.g. α̃t,i in (2.7), which already induces an

estimation error. Thus, even though the DAFL estimator {α̂t}t∈[T ] can consistently recover the sparse and

dense blocks, it inevitably inherits the error from α̃t,i and the rate of convergence deteriorates in general,

cf. the discussion in Remark 1. Intuitively, {α̃B
t }t∈[T ] can be regarded as a thresholding estimator based

on {α̃t}t∈[T ], except that the thresholding is carried out by solving a constrained optimization problem

with desirable features. Those final estimators are a compromise for the fact that main effects are latent,

pinpointing again the difficulty of the sparsity problem in factor models.

Remark 1 Theorem 4 in Section 3.2 shows that the DAFL estimators are only consistent with arbitrary

rates, compared to the rate from the initial estimators according to Theorem 2.1, unless more restrictive

conditions hold. A more practical concern in directly using the DAFL estimators is related to Condi-

tion (IC1). As explained below (2.8), the DAFL estimators might be negative in practice and would not

fulfill Condition (IC1) requiring that all main effects are at least zero. On the other hand, it is easy to

see that the initial estimators from (2.2) and (2.3) satisfy (IC1). This property is retained for the final

estimators due to the way they are constructed.

Moreover, we could also update the base effect estimator as in (2.4), with α̃t and β̃t replaced by α̃B
t

and β̃B
t , respectively. However, this is unnecessary since each µ̃t is already a consistent estimator for the

base effect at time t, while block consistency relies on further assumptions. This line of analysis is therefore

not pursued in this paper.
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3 Assumptions and Theoretical Results

3.1 Assumptions

On top of the identification condition (IC1), we present below a set of assumptions to characterize the

model in (2.1). The explanations to each assumption is deferred to the end of this subsection.

(L1) (Factor strength). We assume that Ar and Ac are of full rank and independent of {Ft} and {Et}.

Furthermore, as p, q → ∞,

Z−1/2
r A⊺

rArZ
−1/2
r → ΣA,r, Z−1/2

c A⊺

cAcZ
−1/2
c → ΣA,c, (3.1)

where Zr = diag(A⊺

rAr), Zc = diag(A⊺

cAc), and both ΣA,r and ΣA,c are positive definite with

all eigenvalues bounded away from 0 and infinity. We assume (Zr)jj ≍ pδr,j for j ∈ [kr] and

1/2 < δr,kr
≤ · · · ≤ δr,2 ≤ δr,1 ≤ 1. Similarly, we assume (Zc)jj ≍ pδc,j for j ∈ [kc], with

1/2 < δc,kc
≤ · · · ≤ δc,2 ≤ δc,1 ≤ 1.

(F1) (Time Series in Ft). There is Xf,t the same dimension as Ft, such that Ft =
∑

w≥0 af,wXf,t−w. The

time series {Xf,t} has i.i.d. elements with mean 0 and variance 1, with uniformly bounded fourth

order moments. The coefficients af,w are such that
∑

w≥0 a
2
f,w = 1 and

∑
w≥0 |af,w| ≤ c for some

constant c.

(E1) (Decomposition of Et). We assume that

Et = Ae,rFe,tA
⊺

e,c +Σǫ ◦ ǫt, (3.2)

where Fe,t is a matrix of size ke,r × ke,c, containing independent elements with mean 0 and variance

1. The matrix ǫt ∈ R

p×q contains independent elements with mean 0 and variance 1, with {ǫt}

independent of {Fe,t}. The matrix Σǫ contains the standard deviations of the corresponding elements

in ǫt, and has elements uniformly bounded away from 0 and infinity.

Moreover, Ae,r and Ae,c are (approximately) sparse matrices with sizes p× ke,r and q × ke,c respec-

tively, such that ‖Ae,r‖1, ‖Ae,c‖1 = O(1), with ke,r, ke,c = O(1).

(E2) (Time Series in Et). There is Xe,t the same dimension as Fe,t, and Xǫ,t the same dimension as ǫt,

such that Fe,t =
∑

w≥0 ae,wXe,t−w and ǫt =
∑

w≥0 aǫ,wXǫ,t−w, with {Xe,t} and {Xǫ,t} independent

of each other, and each time series has independent elements with mean 0 and variance 1 with

uniformly bounded fourth order moments. Both {Xe,t} and {Xǫ,t} are independent of {Xf,t} from

(F1).
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The coefficients ae,w and aǫ,w satisfy
∑

w≥0 a
2
e,w =

∑
w≥0 a

2
ǫ,w = 1 and

∑
w≥0 |ae,w|,

∑
w≥0 |aǫ,w| ≤ c

for some constant c.

(E3) (Tail condition in Ft and Et). Each element in the time series {Xf,t} from Assumption (F1), {Xe,t}

and {Xǫ,t} from Assumption (E2) is sub-Gaussian.

(R1) (Rate assumptions). We assume that,

T−1p2(1−δr,kr )q1−2δc,1 = o(1), p1−2δr,kr q2(1−δc,1) = o(1),

T−1q2(1−δc,kc )p1−2δr,1 = o(1), q1−2δc,kc p2(1−δr,1) = o(1).

With Assumption (L1), we can define the normalized row and column loading matrices Qr = ArZ
−1/2
r

and Qc = AcZ
−1/2
c . Hence Q⊺

rQr → ΣA,r and Q⊺

cQc → ΣA,c. Assumption (L1) allows for weak factors

with heterogeneous factor strengths, which is also similarly seen in Remark 1 in Lam and Yao (2012),

differing from traditional approximate factor models that consider either pervasive factors only (He et al.,

2024) or weak factors with the same factor strength (Wang et al., 2019).

Assumptions (F1), (E1) and (E2) characterize the dynamics in the core factor and noise series, which

is necessary in matrix factor models. Rather than directly presenting, e.g. the weak dependence in noise

as in Assumptions (D) in Yu et al. (2022), our assumptions naturally specify the data generating process,

allowing the noise and core factors to be general linear processes. In particular, the core factor can be serially

correlated under (F1) which also implies that for each t ∈ [T ], E[FtF
⊺

t ] = kcIkr
and E[F⊺

tFt] = krIkc
.

This together with Assumption (L1) thus serve as an alternative set of identification conditions where the

dependence among the latent dynamics driven by the core factors is featured by the loading matrices; see the

discussion in Section 3 in Bai and Ng (2002) for instance. The decomposition by Assumption (E1) together

with the general linear process in (E2) allow the noise to have both serial and cross-sectional dependence.

Hence our Assumptions (E1) and (E2) are comparable to, for example, conditional independence as in

Assumption 3.2 in He et al. (2024).

Assumption (E3) controls the tail of the random variables in model (2.1). It is arguably very mild since

stronger assumptions are often needed in the regularized regression literature, such as Condition (a) in Zou

(2006), Assumption (A1) in Huang et al. (2008), and Assumption (E) in Rinaldo (2009), to name but a

few. In particular, as pointed out in Remark 3 in Fan et al. (2024), such a sub-Gaussianity would not hold

under highly correlated covariates in the regression problem, but the covariate matrix in our formulation is

an identity matrix (see Section 4) and hence this issue is circumvented. Lastly, Assumption (R1) spells out

the rates required on the dimensions and factor strengths, which directly hold if all factors are pervasive.
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3.2 Theoretical results

We discuss the main theoretical results in this subsection. We first present in Theorem 2 the consistency

results for the initial estimators of the base effect and main effects. To show the consistency of the factor

loading matrix estimators, we define the following square matrices

Hr := T−1D̂−1
r Q̂⊺

rQr

T∑

t=1

(FZ,tQ
⊺

cQcF
⊺

Z,t),

Hc := T−1D̂−1
c Q̂⊺

cQc

T∑

t=1

(F⊺

Z,tQ
⊺

rQrFZ,t),

(3.3)

where D̂r := Q̂⊺

r (T
−1
∑T

t=1 L̂tL̂
⊺

t )Q̂r is the kr × kr diagonal matrix of eigenvalues of T−1
∑T

t=1 L̂tL̂
⊺

t .

Similarly, D̂c := Q̂⊺

c (T
−1
∑T

t=1 L̂
⊺

t L̂t)Q̂c is the kc × kc diagonal matrix of eigenvalues of T−1
∑T

t=1 L̂
⊺

t L̂t.

The matrices Hr and Hc are shown to be asymptotically invertible in the proof of Theorem 2.

Theorem 2 Under Assumptions (IC1), (F1), (L1), (E1), (E2), (E3) and (R1), we have the following.

1. The initial estimators for the main effects and the base effect are consistent such that

p−1
∥∥α̃t −α∗

t

∥∥2 = OP

{
q−1 log(p)

}
,

q−1
∥∥β̃t − β∗

t

∥∥2 = OP

{
p−1 log(q)

}
,

(µ̃t − µt)
2 = OP

{
max

( log(p)
q

,
log(q)

p

)}
.

2. With the matrices Hr and Hc defined in (3.3), both the row and column factor loading matrix esti-

mators are consistent such that

p−1
∥∥Q̂r −QrH

⊺

r

∥∥2
F
= OP

(
T−1p1−2δr,kr q1−2δc,1 + p−2δr,kr q2(1−δc,1)

)
,

q−1
∥∥Q̂c −QcH

⊺

c

∥∥2
F
= OP

(
T−1q1−2δc,kc p1−2δr,1 + q−2δc,kc p2(1−δr,1)

)
.

3. The estimated core factor series and common components are consistent such that for any t ∈ [T ],

i ∈ [p], j ∈ [q], we have

∥∥F̂Z,t − (H−1
r )⊺FZ,tH

−1
c

∥∥2
F
= OP

(
p1−δr,kr q1−δc,kc + T−1p1+2δr,1−2δr,kr q1−δc,1 + p1+δr,1−3δr,kr q2−δc,1

+ T−1q1+2δc,1−2δc,kc p1−δr,1 + q1+δc,1−3δc,kc p2−δr,1
)
,

(Ĉt,ij − Ct,ij)
2 = OP

(
p1−2δr,kr q1−2δc,kc + T−1p1+2δr,1−3δr,kr q1−δc,1−δc,kc + p1+δr,1−4δr,kr q2−δc,1−δc,kc

+ T−1q1+2δc,1−3δc,kc p1−δr,1−δr,kr + q1+δc,1−4δc,kc p2−δr,1−δr,kr
)
.

12



From Theorem 2, the rates of convergence for the main effects are worse off by logarithmic factors

compared to the results in Theorem 2 in Lam and Cen (2024), which is understandable since the extrema

of the noise series are inevitably involved due to Condition (IC1). Those rates are comparable to the results

in Lam and Cen (2024) when p and q are of similar polynomial orders, which is satisfied for most data sets

for factor modeling. As mentioned in Section 2.1, the base effect is identified on top of the main effects, so

it is expected that the base effect estimator absorbs the asymptotic rates from the estimators of the row

and column main effects.

On the other hand, as a non-trivial result, our identification condition (IC1) allows us to consider the

common component separately from the base effect and main effects. Hence in Theorem 2, the rates for the

loadings, core factors, and common component estimators are exactly the same as those in Lam and Cen

(2024). We may also prove asymptotic normality for the factor loading matrix estimators and estimate

the covariance matrices as in Lam and Cen (2024) in a trivial sense. For a detailed discussion, we refer to

Remark 3. Furthermore, to provide a better reading experience, we directly show the consistency results

related to the common components when all factors are strong, summarized in the corollary below.

Corollary 3 (Simplified Theorem 2.2 and Theorem 2.3 under pervasive factors). Let all assumptions in

Theorem 2 hold, and further assume that δr,i = δc,j = 1 for any i ∈ [kr ], j ∈ [kc]. Define the renormalized

row and column loading estimators and core factor estimator as

Âr :=
√
p Q̂r, Âr :=

√
q Q̂c, F̂t := F̂Z,t/

√
pq.

Then we have the following for any t ∈ [T ], i ∈ [p], j ∈ [q]:

1

p

∥∥Âr −ArH
⊺

r

∥∥2
F
= OP

( 1

Tq
+

1

p

)
,

1

q

∥∥Âc −AcH
⊺

c

∥∥2
F
= OP

( 1

Tp
+

1

q

)
,

∥∥F̂t − (H−1
r )⊺FtH

−1
c

∥∥2
F
, (Ĉt,ij − Ct,ij)

2 = OP

( 1

Tq
+

1

Tp
+

1

p2
+

1

q2

)
.

From Corollary 3, our renormalized loading estimators have the same performance as the α-PCA

estimators considered by Chen and Fan (2023) in their Theorem 1. It is worth pointing out that this rate

of 1/T q+1/p (resp. 1/Tp+1/q) for the row (resp. column) renormalized loading estimator can be improved

to 1/T q+1/p2 (resp. 1/Tp+1/q2), which will need a rate from asymptotic normality of the factor loading

matrix estimators; see Lemma 5 in Cen and Lam (2025). Hence, together with the results for the core

factor estimator in Corollary 3, our results align with Theorem 4.1 in He et al. (2024). Lastly, our results

on the common component estimator are consistent to Theorem 4 in Chen and Fan (2023).

Before we show the properties of the DAFL estimators, we require some additional rate assumptions
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as follows.

(R2) (Further rate assumptions). We assume that,

λ−1
α q−1 log

(
p

p∑

i=1

|Sα,i|
)
, λ−1

β p−1 log
(
q

q∑

j=1

|Sβ,j |
)
= o(1),

{
q−1 log

(
p

p∑

i=1

|Bα,i|
)
+ λα

}(
min
i∈[p]

min
t∈Bα,i

{α∗2
t,i}
)−1

= oP (1),

{
p−1 log

(
q

q∑

j=1

|Bβ,j|
)
+ λβ

}(
min
j∈[q]

min
t∈Bβ,j

{β∗2
t,j}
)−1

= oP (1).

Assumption (R2) is a set of rate assumptions required for block consistency to hold in general, restrict-

ing the sizes of the sparse and dense blocks, the tuning parameters, and the behavior of the non-zero main

effects. Note that we presume mini∈[p] mint∈Bα,i
{α∗

t,i}, minj∈[q] mint∈Bβ,j
{β∗

t,j} = OP (1), otherwise block

consistency can be trivially obtained by any constant thresholding, which is unrealistic. As long as the

initial estimators of the main effects are consistent with rates according to Theorem 2, we can read the first

line in (R2) as requiring log(T )/(qλα + pλβ) → 0. On the other hand, the second and third lines in (R2)

restricts the tuning parameters to grow slower than the squared minimum non-zero main effects. Those

constraints involving the sizes of the sparse and dense blocks are in parallel to standard assumptions on the

zero and non-zero coefficients in variable selection in linear regression, cf. Assumption (A4) in Huang et al.

(2008). In what follows, we present the block consistency of the DAFL estimators, which further induces

the results for the final estimators {α̃B
t }t∈[T ] and {β̃B

t }t∈[T ].

Theorem 4 Let assumptions in Theorem 2 hold. Further given Assumption (R2), then the DAFL esti-

mators are consistent. As min{p, q, T } → ∞, we also have block consistency such that

P(Ŝα,1 = Sα,1, . . . , Ŝα,p = Sα,p) → 1, P(Ŝβ,1 = Sβ,1, . . . , Ŝβ,q = Sβ,q) → 1.

Corollary 5 Under the assumptions in Theorem 4, the final estimators for the main effects have the

following properties.

1. Block consistency. As min{p, q, T } → ∞, it holds with probability 1 that

{t : α̃B
t,i = 0} = Sα,i for all i ∈ [p],

{t : β̃B
t,j = 0} = Sβ,j for all j ∈ [q].
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2. Uniform convergence. The final estimators in the dense blocks are convergent such that

max
i∈[p]

max
t∈Bα,i

∣∣α̃B
t,i − α∗

t,i

∣∣ = OP

{
q−1/2 log1/2

(
p

p∑

i=1

|Bα,i|
)}

,

max
j∈[q]

max
t∈Bβ,j

∣∣β̃B
t,j − β∗

t,j

∣∣ = OP

{
p−1/2 log1/2

(
q

q∑

j=1

|Bβ,j|
)}

.

Theorem 4 is a key result to derive the desired properties in the final estimators. Note that although

the DAFL estimators are consistent, to derive a comparable rate of convergence as Theorem 2.1 requires

stricter rate conditions than Assumption (R2). This is circumvented in the final estimators, as shown

in Corollary 5.2. Intuitively, the final estimators for the main effects treat the DAFL estimation as a

thresholding procedure. In terms of thresholding, by Assumption (R2), we require in the probability

sense that the squared row main effects to asymptotically dominate the rate q−1 log
(
p
∑p

i=1 |Sα,i|
)
+

q−1 log
(
p
∑p

i=1 |Bα,i|
)
which is effectively of order q−1 log(pT ); similar arguments hold for the column

main effects. Finally, with the block consistency result from Theorem 4 and hence Corollary 5.1, we

present the behaviors of the main effect estimators in the dense blocks as in Corollary 5.2.

Remark 2 In Condition (IC1), the row and column main effects are identified such that mini∈[p]{α∗
t,i} = 0

and minj∈[q]{β∗
t,j} = 0. This is not the only possibility besides the identification used by Lam and Cen

(2024). From the proof of Theorem 1, actually any quantile of the main effects can be used as an identifi-

cation condition. To be precise, consider the row main effects as an example, which can then be identified

by assuming that for some pre-specified constants u ∈ [0, 1] and v, for any t ∈ [T ],

u-th quantile of {α∗
t,1, . . . , α

∗
t,p} = v.

Similarly, the column main effects can also be identified using such a quantile condition. These constitute a

class of identification conditions for the MEFM framework, and could be of independent interests depending

upon the data sets in practice or purpose of the analysis. Examples include the median of {α∗
t,j}j∈[p] = 0

as a tail-robust framework to allow for outliers in the main effects, under which the main effect estimators

can have the same rates of convergence as in Theorem 2 in Lam and Cen (2024) and hence asymptotic

normality therein.

For the current set of (IC1) we are using, asymptotic normality does not follow unfortunately. However,

we stress that our (IC1) is the most natural for handling sparsity in the main effects, which is the reason

why we chose that for further investigations in this paper.

Remark 3 In this remark, we elucidate the details in doing inferences on the factor loading matrix es-

timators Q̂r and Q̂c. As noted in the explanations below Theorem 2, it is by no mere coincidences that
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Theorem 2.3 coincides with Theorems 2 and 3 in Lam and Cen (2024). In detail, the key step lies in the

proof of Theorem 2 where we manage to simplify and write L̃t = MpXtMq, so that the estimators for the

loadings and core factor can be considered separately from the base effect and main effects. Therefore, the

asymptotic normality for each row of the factor loading matrix estimators can be constructed as detailed in

Section 4.4 in Lam and Cen (2024), where a consistent HAC-estimator for the covariance matrix is also

proposed.

In what follows, we discuss the generality of Assumption (M1) used in Lam and Cen (2024) for the

above asymptotic normality to hold. In particular, their Assumption (M1) requires the vector processes

vec
(
Ft

)
and vec

(
Et

)
to be α-mixing, which is to facilitate proofs using central limit theorem for time series

without losing too much generality as in Chen and Fan (2023). In fact, given the general linear processes

in Assumption (F1) and the additional approximately sparse factor structure in (E1), such an α-mixing

condition directly holds when the linear processes have Gaussian innovations. Other than this, as discussed

in Section 15.3 in Davidson (2021): “[...] allowing more general distributions for the innovations yields

surprising results. Contrary to what might be supposed, having the θj tend to zero even at an exponential

rate is not sufficient by itself for strong mixing [...]”, where θj is the coefficient in the linear process, (M1)

can be complicated to verify. We refer interested readers to Theorem 15.9 in Davidson (2021) for a fairly

general result which requires certain non-trivial smoothness conditions on the innovations’ density functions

and decays on the coefficients for a univariate linear process to be α-mixing.

4 Practical Implementation

In this section, we discuss the practical optimization to compute our DAFL estimators. We only focus on

estimating the row main effects by minimizing (2.7), as the arguments for the column main effects follow

similarly. It turns out that our DAFL estimators can be obtained by equivalently solving a generalized lasso

problem (Tibshirani and Taylor, 2011). More specifically, for i ∈ [p], if we define α·,i := (α1,i, . . . , αT,i)
⊺,

Dα,i :=
(
D

(F)⊺
α,i ,D

(L)⊺
α,i

)⊺
, where

D
(L)
α,i := diag

(
{1/α̃1,i, . . . , 1/α̃T,i}

)
,

D
(F)
α,i :=




− (α̃1,i ∨ α̃2,i)
−1 (α̃1,i ∨ α̃2,i)

−1 0 · · · 0

0 − (α̃2,i ∨ α̃3,i)
−1 (α̃2,i ∨ α̃3,i)

−1 · · · 0

...
...

...
. . .

...

0 0 · · · − (α̃T−1,i ∨ α̃T,i)
−1 (α̃T−1,i ∨ α̃T,i)

−1




,
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then (2.7) can be rewritten as

L(α·,i) =
1

2

∥∥α̃·,i −α·,i

∥∥2
2
+ λα

∥∥Dα·,i

∥∥
1
, (4.1)

which has the form of Equation (2) in Tibshirani and Taylor (2011) and the solution path can be computed

by algorithms therein inO(T 3) times; see Algorithm 2 and the discussion in Section 8 in Tibshirani and Taylor

(2011). It might be worth pointing out that although one can stack all rows and directly compute the

solution path on (α⊺

·,1, . . . ,α
⊺

·,p)
⊺, this is not recommended since the computational complexity is of order

T 3p3, compared to T 3p by solving the above problem for each i ∈ [p].

For such an ℓ1 penalized regression problem as (4.1), it is often of interest to study its degrees of freedom

which characterizes the effective number of parameters of a fitting procedure (Efron, 1986; Zou et al., 2007).

In brief, for a data vector y ∈ RT whose elements are uncorrelated with homoscedastic mean µ and variance

σ2, the degrees of freedom of a function g : RT → R

T is defined as

df (g) :=
1

σ2

T∑

t=1

Cov{gt(y), yt}.

As our DAFL estimator α̂·,i is obtained by minimizing (4.1), we are interested in df (α̂·,i) in terms of approx-

imating the vector α̃·,i. For a fixed tuning parameter λα, we may apply Theorem 1 in Tibshirani and Taylor

(2011) and leverage the relation between the primal and dual solutions to conclude

df (α̂·,i) = E{nullity(DA)},

where DA denotes the matrix D with rows restricted on the index set A = {t : (Dα̂·,i)t = 0}. Without

the adaptive terms uα,t,i and γα,t,i in (4.1), our problem boils down to the sparse fused lasso problem in

Equation (47) in Tibshirani and Taylor (2011) and the degrees of freedom can be reduced to the expected

number of non-zero fused groups in α̂·,i. Although we do not have such interpretation in our complicated

scenario, we may readily use the realized nullity(DA) and hence compute an estimate of the degrees of

freedom. This allows us to modify the Mallows’s Cp statistic (Mallows, 1973) as

Ĉp(λα) :=
∥∥α̃·,i − α̂·,i

∥∥2
2
− T σ̂2 + 2σ̂2nullity(DA),

where σ̂2 is the sample variance of α̃·,i. Therefore, in terms of model selection, we may choose the tuning

parameter λα to minimize Ĉp(λα), among a grid of candidates. Note that we use the same λα over i ∈ [p] in

(2.7), so that the theoretical guarantee holds uniformly. In practice, we can either minimize the aggregated

Ĉp(λα) over all i ∈ [p] or, more generally, in our numerical experiments, we select different λα’s for each i.

17



5 Numerical Results

5.1 Simulation

In this subsection, we showcase the numerical performance of the proposed estimators using Monte Carlo

experiments. First, we experiment different settings to evaluate consistency results as described in Theo-

rem 2, before further showing the results in Theorem 4 under various sparsity and signal settings.

For the data generating process, we use general linear processes for the noise and factor series Et and

Ft as pinned down by Assumptions (E1), (E2), (E3) and (F1). Specifically, elements in Ft are jointly

independent and each follows a standardized AR(2) process with coefficients (0.5, -0.3). Elements in Fe,t

and ǫt are similarly constructed, except that the AR coefficients are (-0.4, 0.4) and (0.6, 0.2), respectively.

Furthermore, elements in the standard deviation matrixΣǫ are generated by i.i.d. |N (0, 1)|. The innovation

processes in generating Ft, Fe,t and ǫt are i.i.d. N (0, 1). To incorporate factor strengths, the row factor

loading matrix is generated as Ar = MpUrBr, where Ur ∈ Rp×kr consists of i.i.d. N (0, 1) elements, Mp

is defined in Section 1 so that (IC1) is satisfied, and Br = diag(p−ζr,1 , . . . , p−ζr,kr ). Note that ζr,j ∈ [0, 0.5],

with pervasive factors represented by ζr,j = 0 and weak factors otherwise. The column loading Ac is

similarly generated. Each entry of Ae,r and Ae,c is i.i.d. standard normal and has probability of 0.95 being

exact 0. Throughout the simulation, we fix ke,r = ke,c = 2.

For any t ∈ [T ], the base effect is formed as µt = vµ,t with each vµ,t following i.i.d. N (2, 1). We next

depict the generating mechanism for the row main effect, and all other main effects are constructed in the

similar manners. Consider any i ∈ [p], we first construct α◦
·,i, before making it fulfilling Assumptions (R2)

and (IC1). In detail, denote the stay-in probability for sparse blocks and dense blocks given some sparsity

level by πS
α,i and πB

α,i respectively, such that

P(α◦
t+1,i = 0 | α◦

t,i = 0) = πS
α,i, P(α◦

t+1,i > 0 | α◦
t,i > 0) = πB

α,i, (5.1)

where 0 ≤ πS
α,i + πB

α,i < 2. Essentially, larger stay-in probabilities imply more occurrence of piecewise

blocks, while larger πS
α,i combined with smaller πB

α,i imply larger |Sα,i| and vice versa. Then given some

constants mα and σα, we generate α◦
t,i for t ∈ [T ] by the following steps:

Step 1. Let α◦
1,i ∼ |N (mα, σ

2
α)| with probability (1 − πB

α,i)/(2− πS
α,i − πB

α,i), or α
◦
1,i = 0 otherwise;

Step 2. For t = 2, . . . , T , generate α◦
t,i as i.i.d. |N (mα, σ

2
α)| if α◦

t,i is in the dense block according to (5.1).

In the proposition below, we present the sparsity properties of the resulted α◦
·,i from the above steps.

Proposition 1 For {α◦
t,i}t∈[T ] generated by Steps 1–2 above, it holds that:
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(1) The process 1{α◦
t,i = 0}, t ∈ [T ], is a stationary Markov process with state space {0, 1} and corre-

spondingly stationary distribution (pα,i,∗, 1− pα,i,∗) where pα,i,∗ = (1 − πB
α,i)/(2− πS

α,i − πB
α,i);

(2) Let S◦
α,i = {t : α◦

t,i = 0} be the sparse block induced by {α◦
t,i}t∈[T ], then E(|S◦

α,i|) = Tpα,i,∗;

(3) Let {tℓ+1, . . . , tℓ+mℓ} be any subset of S◦
α,i such that tℓ, tℓ+mℓ+1 /∈ S◦

α,i, then E(mℓ) = (1−πS
α,i)

−1.

The proof of the proposition is relegated to the supplement. From (2) and (3) above, we may adjust the

overall sparsity in the main effects and the length of each sparse intervals based on the interplay between

πS
α,i and πB

α,i. Next, as discussed below Corollary 5, the elements in the dense block are identifiable up to

the threshold of order q−1/2 log1/2(pT ). For simplicity, all α◦
t,i less than q−1/2 log1/2(pT ) are set as zero.

Finally, let α∗
t be the same as α◦

t except that the minimum of α◦
t is replaced by zero if not already so, so

that Condition (IC1) is fulfilled. Analogously, the column main effects can be formed given mβ, σβ , π
S
β,j

and πB
β,j . Every experiment in this subsection is repeated 500 times unless otherwise stated.

5.1.1 Accuracy of estimators

To evaluate the accuracy of our estimators on the factor structure, given any series of parameters θ =

{θt}t∈[T ], where θt can be a scalar, vector, or matrix, and its estimator θ̂ = {θ̂t}t∈[T ], we define the mean

squared errors as

MSE(θ̂) :=

∑T
t=1 ‖θt − θ̂t‖2F

Tdθ
,

where dθ denotes the number of elements in θt. Moreover, for any given Q and Q̂, we use the column

space distance to measure their discrepancy:

D(Q, Q̂) :=
∥∥∥Q(Q⊺Q)−1Q⊺ − Q̂(Q̂⊺Q̂)−1Q̂⊺

∥∥∥,

which is widely used in the literature such as Chen et al. (2022), among others. If not specified, for

simplicity and ease of notation, let πS := πS
α,i = πS

β,j , π
B := πB

α,i = πB
β,j , and p∗ := pα,i,∗ = pβ,j,∗. We

consider the following settings:

(Ia) Baseline, weak sparsity. T = 100, p = q = 40, kr = 1, kc = 2. All factors are pervasive with

ζr,j = ζc,j = 0. Set also σα = σβ = 1, and the signal strength mα = mβ = 1. The sparseness is weak

with πS = 0.4, πB = 0.8.

(Ib) One weak factor. Same as (Ia), but one factor is weak with ζr,1 = ζc,1 = 0.2.

(Ic) Stronger sparsity. Same as (Ib), except that the sparseness is stronger with πB = 0.4.

(Id) Longer series. Same as (Ic) but T = 200.
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(Ie) Larger dimensions. Same as (Id) but p = q = 80.

(IIa–e) Temporal independence. Same as (Ia) to (Ie) respectively, except that elements in Ft, Fe,t and

ǫt are white noise rather than AR(2).

The six panels in Figure 1 summarize the accuracy of the estimators across different settings. From

the transitions from (Ia) to (Ie), introducing weak factors does not affect the accuracy of our estimators on

the base and main effects, corroborating the fact that the base and main effect estimations are detached

from the estimation of the common component, due to our model identification. On the other hand, the

factor loading space errors—hence the common component errors—are inflated by weak factors, aligning

to the findings in Lam and Cen (2024).

The detrimental effects of stronger sparsity with respect to initial estimators are shown by the bump

from (Ib) to (Ic), since the definitions in (2.2) and (2.3) suffer from larger bias and variance while incor-

porating more zeros, which leads to the motivation of our DAFL estimator. We would expect a better

performance of α̂B
t and β̂B

t , demonstrated in Section 5.1.2. As dimensions increase in setting (Ie), the

errors of initial estimators drop significantly, as described in Theorem 2. Furthermore, the increase in di-

mensions and series length benefit both the estimation of the factor loading space and common component.

Note also that imposing stronger temporal dependence slightly inflates the variability of every estimator,

demonstrated by comparing settings (Ia)–(Ie) and (IIa)–(IIe).

5.1.2 Performance of the final estimators

We consider the following settings to show the behavior of the final estimators in terms of block recovery

and improvement compared to the initial estimators.

(IIIa) Baseline with stronger signal. Same as (Ia), but with mα = mβ = 2. Note that by Proposition 1,

we have p∗ = 0.25 and E(ml) = 5/3.

(IIIb) Longer sparse blocks. Same as (IIIa), but with πB = 0.4, so that p∗ = 0.5 and E(ml) = 5/3.

(IIIc) Longer sparse sub-blocks. Same as (IIIa), but with πS = 0.8, πB = 0.8, so that p∗ = 0.5 and

E(ml) = 5.

(IIId) Larger variation. Same as (IIIb), but with σα = σβ = 2.

(IIIe) Weaker signal. Same as (IIIb), but with mα = mβ = 1.

(IIIf) Larger dimensions. Same as (IIIb), but with p = q = 80.

(IIIg) Longer series. Same as (IIIf), but with T = 200.
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Figure 1: Box plots of the MSEs (in log-scale) for α̃t, β̃t, µ̃t, Ĉt, Q̂r, Q̂c against settings from (Ia) to
(Ie), comparing with settings (IIa)–(IIe).
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To motivate the different sparsity settings in (IIIb) and (IIIc), parameters are varied to feature different

characteristics of sparsity. In detail, we have longer sparse blocks in setting (IIIb) compared to (IIIa) while

the expected length of each sub-block, E(ml) (see Proposition 1(3)), is the same. Similarly, setting (IIIc)

facilitates longer sparse sub-blocks compared to (IIIb) but they have the same p∗ controlling the total size

of the sparse blocks. Experimenting different length of sparse sub-blocks in setting (IIIc) is necessary, so

that we can examine the ability of the fused term in (2.7), designed to recover piecewise sparsity. For every

replication, we retain the DAFL estimators α̂t and β̂t under the optimal tuning parameter λ̂Cp
selected

according to Section 4. To quantify how well we recover the sparse and dense blocks, the sensitivity (true

positive rate) and specificity (true negative rate) for the row main effects are defined as

sensitivityα =

∑p
i=1 |{t ∈ Bα,i : α̂t,i > 0}|∑p

i=1 |Bα,i|
, specificityα =

∑p
i=1 |{t ∈ Sα,i : α̂t,i = 0}|∑p

i=1 |Sα,i|
.

The two measures for the column effects, sensitivityβ and specificityβ, are analogously defined. From

Table 1, the block selection of our final estimators attains superior performance across all the settings (IIIa)–

(IIIg). In particular, the estimators are oracle in view of sensitivity, viz. every truly non-zero entry in both

row and column effects is recovered perfectly. It benefits from our tuning parameter selection method,

which is calibrated to enforce sparsity without over-penalizing and thus hardly shrinks true signals to

zero. Specificity remains virtually unchanged when we lengthen the sparse blocks from settings (IIIa)–

(IIIb), demonstrating that our estimator continues to correctly exclude zero entries even as true sparse

segments grow larger. It is worth noticing that when the size of sparse sub-blocks increases in (IIIc),

specificity improves appreciably. This reflects that the fused penalty in (2.7) enforces piecewise-constant

and suppresses total variation, which is suitable for a piecewise-sparse scenario. A larger variation in

(IIId) does not undermine the performance, but a weaker signal in (IIIe) leads to a pronounced decline

in specificity, underscoring the critical role of signal-to-noise ratio in accurate sparsity recovery. Finally,

it is not surprising that the increase in dimensions and length of the series improves the performance and

reduces estimation variations.

To visualize the advantage of our final estimator, we compare MSE(α̂B
t ) and MSE(α̃t), MSE(β̂B

t ), and

MSE(β̃t) under settings (IIIa)–(IIIg). The results are shown in Figure 2. In every simulation design, the

final estimator achieves a markedly lower median error. The advantage is particularly pronounced when

sparsity increases from setting (IIIa) to (IIIb) and (IIIc), where the penalization effectively leverages the

sparse structure. However, our final estimator suffers very mildly from larger variation in setting (IIId),

but still outperforms the initial estimator. As the dimensionality and the length of the time series grow in

(IIIf) and (IIIg), the advantage widens.

Lastly, we further examine the sensitivity and specificity of the final estimators by tuning different
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Table 1: Sensitivity and Specificity for final estimators α̂B
t and β̂B

t across settings (IIIa)–(IIIg). Means and
standard deviations (bracketed) over 500 replications are displayed.

Setting sensitivityα sensitivityβ specificityα specificityβ

(IIIa) 1 (0) 1 (0) .977 (.008) .976 (.008)

(IIIb) 1 (0) 1 (0) .978 (.006) .978 (.007)

(IIIc) 1 (0) 1 (0) .994 (.002) .994 (.002)

(IIId) 1 (0) 1 (0) .986 (.005) .986 (.005)

(IIIe) 1 (0) 1 (0) .913 (.020) .913 (.019)

(IIIf) 1 (0) 1 (0) .982 (.006) .982 (.005)

(IIIg) 1 (0) 1 (0) .992 (.002) .992 (.002)
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Final Estimator Initial Estimator

Accuracy of Final versus Initial Estimator for βt

Figure 2: Box plots of the MSEs (in log-scale) of final estimators α̂B
t and β̂B

t versus initial estimators α̃t

and β̃t against settings from (IIIa) to (IIIg).

parameters: (i) expected sub-block length E(ml), which is inspired from the improved performance in

setting (IIIc) compared to (IIIb); (ii) dimension p and q; and (iii) the series length T . We present the

results for case (i) in Figure 3, and both results for (ii) and (iii) in Figure 4. Here, we only focus on the

row main effects as the results for the column main effects are analogous and thus omitted. Sensitivity

remains identically 1 in all settings, confirming the robustness of non-zero main effect selection. As E(ml)

grows, specificity rises monotonically and achieves near 99% when the expected sub-block length is larger,

indicating highly accurate sparse-block detection. Likewise, specificity improves monotonically as either

the dimensionality p and q or the series length T increases.
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Figure 3: Sensitivity and specificity for the row main effects against different expected lengths of sparse
sub-blocks. The setting is the same as (IIIb), but E(ml) takes different values by adjusting πS and πB.
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Figure 4: Sensitivity and specificity for the row main effects against different dimensionality p and q and
series length T . Same as setting (IIIb) but with corresponding (p, q, T ). We set p = q for simplicity.

5.2 Real data analysis

We illustrate the proposed method for MEFM using the publicly available New York City (NYC) Yellow

Taxi Trip Records (https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page). Each raw trip record

includes pick-up/drop-off timestamps, pick-up/drop-off location codes, trip distance, fare components,

payment information, etc. The Taxi and Limousine Commission’s map partitions NYC into 265 zones, and
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we focus on the 69 zones on Manhattan Island which accounts for the vast majority of trip activity. Let

Xt ∈ R69×24 denote the matrix for calendar day t. Its (i, j)-th entry counts all trips with drop-off zone

i and pick-up time in the j-th hourly slot. We analyze the period from 1 January 2019 to 31 December

2022, which spans the dramatic mobility collapse during the 2020 Covid-19 lockdown and the subsequent

recovery. To respect the distinct spatial/temporal rhythms of the city, we further split the series into

weekday and weekend subsets, containing 1044 and 417 days, respectively, and estimate the model on each

subset separately, where tuning parameters are chosen via the modified Cp criterion described in Section 4.

In Figure 5, the location main effects for weekdays and weekends are demonstrated. Firstly, an abrupt

shift from dark red to pale white in mid-March 2020 signals the pandemic lockdown, during which the

location main effect estimators for almost all Manhattan zones collapse to zero for several months. Sec-

ondly, the rebound is asymmetric: weekday activity re-emerges more quickly than weekend activity in

most zones, reflecting a faster return to work routines while leisure remains depressed. Thirdly, several

locations—Liberty, Ellis, Governors, and Randalls Islands—stay faint almost throughout, yet the model

still detects sporadic taxi traffic. On the other hand, zones such as Harlem, Hamilton Heights, Manhattan

Valley, and Washington Heights preserve moderate intensities even during the pandemic, underscoring local

demand. Finally, neither weekdays nor weekends regain their 2019 pre-pandemic intensity by late 2021–

2022, demonstrating the impact of Covid-19 on Manhattan mobility and, by extension, urban economic

and lifestyle patterns. Notably, the fused penalty is what allows the model to delineate the prolonged

“silent” pandemic interval, yet it remains sensitive enough to uncover the faint residual taxi activity that

persisted throughout the lockdown.

To further demonstrate the spatial pattern, Figure 6 offers a snapshot of how the estimated location

main effects evolved across Manhattan. Six representative days are selected to demonstrate the before,

during, and after Covid-19 period for weekdays and weekends. Before the pandemic, both rows are covered

by dark reds, but their centers of taxi rides differ: weekdays peak in business core in Midtown whereas

weekends tilt toward leisure areas in the West Village, SoHo and the Lower East Side. However, during

lockdown, the island converts almost uniformly pale, and only a few residential and hospital-adjacent

blocks in Upper Manhattan retain faint activity during weekday, while the corresponding weekend map is

blank, underscoring the sharper collapse of leisure travel. After a year of rehabilitation, demand partially

returns, but the asymmetry remains: weekend drop-offs stay muted across several entertainment districts

downtown, and weekday rebounds more strongly, especially in residential uptown zones.

Furthermore, the hour main effect is displayed in Figure 7. We may observe that Weekday mobility

peaks in the late-afternoon commute (3pm–6pm) and tapers off by 1am, whereas weekends sustain a

pronounced nightlife pulse until about 4am and begin later in the morning. In addition, the lockdown
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starts in mid-March 2020, erases nearly all hourly traffic for several weeks. The weekend panel stays blank

longer, demonstrating a sharper hit to entertainment travel. Moreover, recovery unfolds asymmetrically,

where weekday evening activity re-emerges first (from mid-June 2020), with the signal band sliding from

5pm down to midnight over the next year. Weekend nightlife restarts only in the early autumn of 2020,

and does not regain its pre-pandemic 4am endpoint by 2022, indicating a lasting contraction of late-night

leisure demand.
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Figure 5: Heatmap of the location main effect α̂B
t .

6 Concluding Remarks

In this article, we address a critical gap in the literature of matrix factor models by developing methodologies

to recover any sparsity structure within. In particular, we leverage MEFM by Lam and Cen (2024) and

reconcile the dual demands of interpretability for e.g. applied econometricians, and structural parsimony

inherent in matrix-valued time series. Through the flexible, data-driven identification scheme, our approach

enables meaningful sparsity in the main effects without forcing unrealistic parameter configurations. This

advancement broadens the applicability of matrix factor models to scenarios where localized effects exist,
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Figure 6: Snapshot heatmaps of location main effect. The top rows are weekdays, and the bottom rows
are weekends. The color scale matches Figure 5.
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Figure 7: Heatmap of the hour main effect β̂B
t .
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as demonstrated by the real example to analyze traffic data. We hope that this article sheds light on the

sparsity structure in data analysis for matrix-valued time series or even higher-order tensor time series,

which shall provide new insights in addressing dependency in complicated data structures.

Although we only consider sparsity in the main effects, it is possible to study approximately sparse

loading matrices as in Assumption 2 in Freyaldenhoven (2022), or exactly sparse loadings as in Assump-

tion 2 in Uematsu and Yamagata (2023a), among others. Their methods can be directly applied to the

vectorization of the matrix time series L̃t (t ∈ [T ]) defined in (2.5), at the cost of overlooking the matrix

nature in each observed data matrix and inflating number of parameters. These observations demand

further development of sparsity in matrix factor models. In fact, methodologies designed for the classical

factor models are all applicable to L̃t (t ∈ [T ]) in practice, and hence the approach proposed in this paper

can be used as a powerful pre-processing of the observed data set.
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Supplementary materials for the paper “Sparsity of the Main

Effect Matrix Factor Models”

A Technical Proofs

A.1 Proof of Theorems

Proof of Theorem 1. To show (i), suppose we have another set of parameters,
(
µ̈t, α̈t, β̈t, C̈t

)
for t ∈ [T ],

also satisfying (2.1). For each t ∈ [T ], right-multiply 1q on both sides of (2.1), by Assumption (IC1), it

holds that

Xt1q = qα∗
t + 1p(qµt + 1⊺

qβ
∗
t ) +Et1q

= qα̈t + 1p(qµ̈t + 1⊺

q β̈t) +Et1q.

Notice that both (qµt + 1⊺

qβ
∗
t ) and (qµ̈t + 1⊺

q β̈t) are scalars, we obtain α∗
t − α̈t = c1p for some scalar

constant c. This implies the index sets argminj{α∗
t,j} = argminj{α̈t,j}, which hence uniquely determine

the main-effect vector up to a shift. Together with Assumption (IC1), we conclude that c = 0 and α∗
t = α̈t

as a result. We also have β∗
t = β̈t by left-multiplying 1⊺

p on both sides of (2.1) and use a similar argument.

For each t ∈ [T ], by respectively left- and right-multiplying 1⊺

p and 1q on both sides of (2.1), we obtain

1⊺

pXt1q = pqµt + q1⊺

pα
∗
t + p1⊺

qβ
∗
t + 1⊺

pEt1q

= pqµ̈t + q1⊺

pα̈t + p1⊺

q β̈t + 1⊺

pEt1q,

so that µt = µ̈t given all main effects are identified previously. Lastly, the remaining components Ct and

C̈t trivially coincide for all t ∈ [T ].

For (ii), given Xt = ÁrFtÁ
⊺

c +Et =: Ćt +Et, we can construct for each t ∈ [T ],

Ar = MpÁr = (Ip − p−11p1
⊺

p)Ár , α∗
t = q−1MpĆt1q − 1p min{MpĆt1q},

Ac = MqÁc = (Iq − q−11q1
⊺

q )Ác, β∗
t = p−1MqĆ

⊺

t 1p − 1q min{MqĆ
⊺

t 1p},

µt = (pq)−11⊺

pĆt1q +min{MpĆt1q}+min{MqĆ
⊺

t 1p}.

By Remark 1 in Lam and Cen (2024), it holds immediately that

Ćt = (pq)−1(1⊺

pĆt1q)1p1
⊺

q + q−1(MpĆt1q)1
⊺

q + p−11p(MqĆ
⊺

t 1p)
⊺ + (MpÁr)Ft(MqÁc)

⊺

= µt1p1
⊺

q +α∗
t1

⊺

q + 1pβ
∗⊺
t +ArFtA

⊺

c ,
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as in (2.1). It is easy to see min{α∗
t } = 0 and min{β∗

t } = 0. Condition (IC1) is indeed satisfied by

Ma1a = 0 and hence

1⊺

p(MpÁr) = 0, 1⊺

q (MqÁc) = 0.

This completes the proof of the theorem. �

Proof of Theorem 2. By Condition (IC1), right-multiplying 1q on both sides of (2.1), we have

Xt1q = qµt1p + qα∗
t + 1p1

⊺

qβ
∗
t +Et1q. (A.1)

Then taking minimum over vector entries on both sides of (A.1) and left-multiplying 1p give us

1p min{Xt1q} = qµt1p + 1p min{1p1
⊺

qβ
∗
t }+ 1p min{Et1p} = qµt1p + 1p1

⊺

qβ
∗
t + 1p min{Et1p}.

Substitute (qµt1p) back to (A.1), we then have qα∗
t = Xt1q − 1p min{Xt1q} − Et1q + 1p min{Et1q}.

Similarly, for β∗
t , we have qβ∗

t = X
⊺

t 1p − 1q min{X⊺

t 1p} −E
⊺

t 1p + 1q min{E⊺

t 1p}.

Therefore, for the initial estimators for the main effects, we have

1

p
‖α̃t −α∗

t ‖2 =
1

p
‖q−1Et1q − q−11p min{Et1q}‖2,

1

q
‖β̃t − β∗

t ‖2 =
1

q
‖p−1E

⊺

t 1p − p−11q min{E⊺

t 1p}‖2.

Furthermore, by Lemma 1,

E

[
‖q−1Et1q‖2

]
= q−2

p∑

i=1

Var
( q∑

j=1

Et,ij

)
= O(pq−1). (A.2)

Similarly, ‖p−1E
⊺

t 1p‖2 = OP (qp
−1). Then, consider a series of sub-Gaussian random variables {Xi}pi=1

with variance proxy σ2. For any λ ≥ 0, by the Jensen’s inequality,

exp{λE(max
i∈[p]

{Xi})} ≤ E(exp{λmax
i∈[p]

{Xi}}) ≤ E(max
i∈[p]

{exp{λXi}}) ≤
p∑

i=1

E(eλXi ) ≤ peλ
2σ2/2,

implying that E(maxi∈[p]{Xi}) ≤ log(p)/λ + λσ2/2 ≤
√
2σ2 log(p), where equality holds in the last in-

equality only when λ =
√
2 log(p)/σ. Therefore, we conclude E(maxi∈[p] |Xi|) ≤

√
2σ2 log(2p).

With the above argument, note that for each i ∈ [p], Xi =
∑q

j=1 Et,ij is a sub-Gaussian random

variables with variance proxy σ2 ≍ q. Subsequently, we have E(maxi∈[p]{|
∑q

j=1 Et,ij |}) = O(
√

q log(p)),
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yielding ‖q−11p min{Et1q}‖2 = OP (q
−1p log(p)). Together with (A.2), we have

1

p
· ‖α̃t −α∗

t ‖2 = OP (q
−1 log(p)),

1

q
· ‖β̃t − β∗

t ‖2 = OP (p
−1 log(q)).

In addition,

(µ̃t − µt)
2 =

{
p−11⊺

p(α̃t −α∗
t ) + q−11⊺

q (β̃t − β∗
t )− (pq)−11⊺

pEt1q

}2

=
{
q−1 min{Et1q}+ p−1 min{E⊺

t 1p} − (pq)−11⊺

pEt1q

}2
.

We have (q−1 min{Et1q})2 = OP (q
−1 log(p)) from the above result, and similarly (p−1 min{E⊺

t 1p})2 =

OP (p
−1 log(q)). As shown in Theorem 2 in Lam and Cen (2024),

(
(pq)−11⊺

pEt1q

)2
= OP (p

−1q−1). Com-

bining all the above results in

(µ̃t − µt)
2 = OP

( log(p)
q

)
+OP

( log(q)
p

)
+OP

( 1

pq

)
= OP

{
max

( log(p)
q

,
log(q)

p

)}
.

For the next step, we show the consistency of the factor loading estimators. Recall the notation that

Ma = Ia − a−11a1
⊺

a, from (2.5), we have

L̃t = Xt − (pq)−11⊺

pXt1q1p1
⊺

q + p−11⊺

pα̃t1p1
⊺

q + q−11⊺

q β̃t1p1
⊺

q − α̃t1
⊺

q − 1pβ̃
⊺

t

= MpXt(1q1
⊺

q/q) +XtMq −Mpα̃t1
⊺

q − 1qβ̃
⊺

t Mq

= MpXt(1q1
⊺

q/q) +XtMq −MpXt(1q1
⊺

q/q)− (1p1
⊺

p/p)XtMq = MpXtMq,

where the second last equality used the definitions of α̃t and β̃t in (2.2) and (2.3) respectively, together

with the fact that Ma1a = 0. Hence,

L̃tL̃
⊺

t = MpXtMqM
⊺

qX
⊺

tM
⊺

p = MpXtMqX
⊺

tMp

= Mp(Ct +Et)Mq(C
⊺

t +E
⊺

t )Mp = CtC
⊺

t +CtE
⊺

tMp +MpEtC
⊺

t +MpEtMqE
⊺

tMp

= CtC
⊺

t +CtE
⊺

t +EtC
⊺

t +EtE
⊺

t + (pq)−1Et1q1
⊺

qE
⊺

t 1p1
⊺

p + (pq)−11p1
⊺

pEt1q1
⊺

qE
⊺

t

− p−1CtE
⊺

t 1p1
⊺

p − p−11p1
⊺

pEtC
⊺

t − p−1EtE
⊺

t 1p1
⊺

p − p−11p1
⊺

pEtE
⊺

t − q−1Et1q1
⊺

qE
⊺

t

+ p−21p1
⊺

pEtE
⊺

t 1p1
⊺

p − (pq)−1p−11p1
⊺

pEt1q1
⊺

qE
⊺

t 1p1
⊺

p , (A.3)

which is exactly the same as the result in the proof of Theorem 2 in Lam and Cen (2024). Similarly, it
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holds for L̃⊺

t L̃t that

L̃
⊺

t L̃t = C
⊺

tCt +C
⊺

tEt +E
⊺

tCt +E
⊺

tEt + (pq)−1E
⊺

t 1p1
⊺

pEt1q1
⊺

q + (pq)−11q1
⊺

qE
⊺

t 1p1
⊺

pEt

− q−1C
⊺

tEt1q1
⊺

q − q−11q1
⊺

qE
⊺

tCt − q−1E
⊺

tEt1q1
⊺

q − q−11q1
⊺

qE
⊺

tEt − p−1E
⊺

t 1p1
⊺

pEt

+ q−21q1
⊺

qE
⊺

tEt1q1
⊺

q − (pq)−1q−11q1
⊺

qE
⊺

t 1p1
⊺

pEt1q1
⊺

q . (A.4)

To ease the notation, define

Rr,t := CtE
⊺

t +EtC
⊺

t +EtE
⊺

t + (pq)−1Et1q1
⊺

qE
⊺

t 1p1
⊺

p + (pq)−11p1
⊺

pEt1q1
⊺

qE
⊺

t

− p−1CtE
⊺

t 1p1
⊺

p − p−11p1
⊺

pEtC
⊺

t − p−1EtE
⊺

t 1p1
⊺

p − p−11p1
⊺

pEtE
⊺

t − q−1Et1q1
⊺

qE
⊺

t

+ p−21p1
⊺

pEtE
⊺

t 1p1
⊺

p − (pq)−1p−11p1
⊺

pEt1q1
⊺

qE
⊺

t 1p1
⊺

p , (A.5)

Rc,t := C
⊺

tEt +E
⊺

tCt +E
⊺

tEt + (pq)−1E
⊺

t 1p1
⊺

pEt1q1
⊺

q + (pq)−11q1
⊺

qE
⊺

t 1p1
⊺

pEt

− q−1C
⊺

tEt1q1
⊺

q − q−11q1
⊺

qE
⊺

tCt − q−1E
⊺

tEt1q1
⊺

q − q−11q1
⊺

qE
⊺

tEt − p−1E
⊺

t 1p1
⊺

pEt

+ q−21q1
⊺

qE
⊺

tEt1q1
⊺

q − (pq)−1q−11q1
⊺

qE
⊺

t 1p1
⊺

pEt1q1
⊺

q , (A.6)

so that from (A.3) and (A.4), we can write

L̃tL̃
⊺

t = CtC
⊺

t +Rr,t, L̃
⊺

t L̃t = C
⊺

tCt +Rc,t.

The remaining steps are exactly the same as in the proof of Theorem 2 in Lam and Cen (2024). Hence,

∥∥Q̂r −QrH
⊺

r

∥∥2
F
= OP

(
T−1p2(1−δr,kr )q1−2δc,1 + p1−2δr,kr q2(1−δc,1)

)
,

∥∥Q̂c −QcH
⊺

c

∥∥2
F
= OP

(
T−1q2(1−δc,kc )p1−2δr,1 + q1−2δc,kc p2(1−δr,1)

)
,

where Hr and Hc are asymptotically invertible by Lemma 5 in Lam and Cen (2024). Finally, the rates

of the error of estimated factor series and individual common components are identical to Theorem 3 in

Lam and Cen (2024), as well as their proofs, which completes the proof of Theorem 2. �

Proof of Theorem 4. It is sufficient to show the results for the row main effects, as the proof for the

column main effects follows similarly. We first show the block consistency or equivalently, sign consistency

of the DAFL estimators according to (2.7) in estimating the row main effects. Define α̃·,i = (α̃1,i, . . . , α̃T,i)
⊺

and α̂·,i = (α̂1,i, . . . , α̂T,i)
⊺, for the ease of notation. By the KKT condition, α̂·,i is a solution minimizing
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the loss function in (2.7) if and only if there exists a subgradient

h = ∂
( T∑

t=2

uα,t,i

∣∣α̂t,i − α̂t−1,i

∣∣
)
=
{
h ∈ RT such that

h1 :





h1 = −uα,2,i sign(α̂2,i − α̂1,i), α̂1,i 6= α̂2,i;

|h1| ≤ uα,2,i, otherwise.
;

hT :





hT = uα,T,i sign(α̂T,i − α̂T−1,i), α̂T,i 6= α̂T−1,i;

|hT | ≤ uα,T,i, otherwise.
;

for t = 2, . . . , T − 1,

ht :





ht = uα,t,i sign(α̂t,i − α̂t−1,i)− uα,t+1,i sign(α̂t+1,i − α̂t,i), α̂t−1,i 6= α̂t,i 6= α̂t+1,i;
∣∣ht + uα,t+1,i sign(α̂t+1,i − α̂t,i)

∣∣ ≤ uα,t,i, α̂t−1,i = α̂t,i 6= α̂t+1,i;
∣∣ht − uα,t,i sign(α̂t,i − α̂t−1,i)

∣∣ ≤ uα,t+1,i, α̂t−1,i 6= α̂t,i = α̂t+1,i;
∣∣ht

∣∣ ≤ uα,t,i + uα,t+1,i, otherwise.





,

(A.7)

and also a subgradient

g = ∂
( T∑

t=1

γα,t,i
∣∣α̂t,i

∣∣
)
=




g ∈ RT :





gt = γα,t,i sign(α̂t,i), α̂t,i 6= 0;

|gt| ≤ γα,t,i, otherwise.





, (A.8)

such that differentiating L(α̂·,i) ≡ L(α̂1,i, . . . , α̂T,i) with respect to α̂·,i, we have

α̂·,i − α̃·,i = −∂
(
λα

T∑

t=2

uα,t,i

∣∣α̂t,i − α̂t−1,i

∣∣+ λα

T∑

t=1

γα,t,i
∣∣α̂t,i

∣∣
)
= −λαh− λαg. (A.9)

Without loss of generality, we can always partition each sparse block into Sα,i = Sα,i∪S◦
α,i , where Sα,i

is the periods when the main effect is piecewise zero and S◦
α,i is the periods when the main effect is distinct

zero. Formally, Sα,i is the largest set such that for all t ∈ Sα,i: (i) α
∗
t,i = 0; (ii) {t− 1, t+ 1} ∩ Sα,i 6= ∅.

Due to the intricacy in (A.7), we define the interior of Sα,i as

S∗
α,i =

{
t ∈ Sα,i : either t ∈ {1, T } or {t− 1, t+ 1} ⊆ Sα,i

}
,

that is, both (or only one neighbor when t = 1, T ) neighboring timestamps are still in the sparse block.

To have sign consistency, we first show consistency in recovering the sparse block. (A.9) implies that
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uniformly over i ∈ [p] and t ∈ Sα,i,

α̃t,i = λαht + λαgt, (A.10)

where |gt| ≤ γα,t,i according to (A.8). Firstly consider t ∈ Sα,i, we discuss this in three cases to ease the

discussion, where Cases (a) and (c) correspond to consistency in recovering the interior of the sparse block,

Case (b) corresponds to the margin, Sα,i \ S∗
α,i, of the sparse block:

(a) t ∈ S∗
α,i and t /∈ {1, T }, i.e., both the previous and the next timestamps are also in the sparse block;

(b) t ∈ Sα,i \ S∗
α,i, recall that it means either the previous or the next timestamp is in the sparse block

(but not both), i.e., {t− 1, t} ⊆ Sα,i or {t, t+ 1} ⊆ Sα,i; the definition also implies t 6= 1 and t 6= T ,

which facilitates us to better discuss the subgradient h;

(c) t ∈ S∗
α,i and t ∈ {1, T }.

Consider Case (a) first, then the subgradient h in (A.7) can only take values
∣∣ht

∣∣ ≤ uα,t,i + uα,t+1,i.

Hence for (A.10), we need to show that (uniformly over i ∈ [p] and t ∈ Sα,i),

|α̃t,i| =
∣∣λαht + λαgt

∣∣ ≤ λα|ht|+ λα|gt| ≤ λα(uα,t,i + uα,t+1,i) + λαγα,t,i.

The right hand side above is lower bounded by λα/α̃t,i, according to the definition of uα,t,i and γα,t,i.

Hence it suffices to show

max
i∈[p]

max
t∈Sα,i:t−1∈Sα,i

{
α̃2
t,i

}
= max

i∈[p]
‖(α̃·,i)Sα,i

‖2max = oP (λα),

where the second equality indeed holds true from Assumption (R2) and the first result of Lemma 3.

For Case (b), the subgradient value for ht satisfies

either
∣∣ht + uα,t+1,i

∣∣ ≤ uα,t,i with 0 = α̂t−1,i = α̂t,i 6= α̂t+1,i

or
∣∣ht + uα,t,i

∣∣ ≤ uα,t+1,i with α̂t−1,i 6= α̂t,i = α̂t+1,i = 0.

We only consider the first scenario above as the second follows a similar proof. Notice that α̃t,i ≥ 0, so

with (A.10), it suffices to show that (uniformly over i ∈ [p] and t ∈ Sα,i with t+ 1 ∈ Bα,i),





−λαuα,t+1,i − λαuα,t,i − λαγα,t,i ≤ 0,

α̃t,i ≤ −λαuα,t+1,i + λαuα,t,i + λαγα,t,i,
(A.11)
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where the first inequality is immediate by noticing all uα,t+1,i, uα,t,i, and γα,t,i are non-negative. For the

second inequality, since α̃t,i is dominated by λαuα,t,i+λαγα,t,i for t ∈ Sα,i using the argument in Case (a),

it remains to show uα,t+1,i is stochastically dominated by γα,t,i, for which, noting that Sα,i ⊆ Sα,i, it

suffices to show

max
i∈[p]

max
t∈Sα,i:t+1∈Bα,i

{α̃t,i} = oP
(
min
i∈[p]

min
t∈Sα,i:t+1∈Bα,i

{α̃t+1,i}
)
. (A.12)

In detail, we have





maxi∈[p] maxt∈Sα,i:t+1∈Bα,i
{α̃t,i} ≤ maxi∈[p] ‖(α̃·,i)Sα,i

‖max,

mini∈[p] mint∈Sα,i:t+1∈Bα,i
{α̃t+1,i}

≥ mini∈[p] mint∈Sα,i:t+1∈Bα,i
{α∗

t+1,i} −maxi∈[p] maxt∈Sα,i:t+1∈Bα,i
|α̃t+1,i − α∗

t+1,i|,

which, together with Assumption (R2) and Lemma 3, shows (A.12).

Lastly, consider Case (c). If t = 1, then we have |h1| ≤ uα,2,i; otherwise if t = T , then |hT | ≤ uα,T,i.

Suppose t = 1, with (A.10), it is required that

|α̃1,i| =
∣∣λαh1 + λαg1

∣∣ ≤ λα|h1|+ λα|g1| ≤ λαuα,2,i + λαγα,1,i.

Similar to Case (a), it is sufficient to show maxi∈[p]{α̃2
1,i} ≤ maxi∈[p] ‖(α̃·,i)Sα,i

‖2max = oP (λα), which is

true by exactly the same argument in Case (a). The argument for the scenario t = T is similar and hence

omitted here. This completes the proof of consistency in recovering the sparse blocks.

It remains to consider t ∈ S◦
α,i for consistency in the sparse block. Using (A.7), we require uniformly

over i ∈ [p] and t ∈ S◦
α,i that

∣∣α̃t,i + uα,t,i + uα,t+1,i

∣∣ = α̃t,i + λαuα,t,i + λαuα,t+1,i ≤ λαγα,t,i,

which holds true if we can show





maxi∈[p] ‖(α̃·,i)S◦

α,i
‖2max ≤ maxi∈[p] ‖(α̃·,i)Sα,i

‖2max = oP (λα),

maxi∈[p] maxt∈S◦

α,i
:t+1∈Bα,i

{α̃t,i} = oP
(
mini∈[p] mint∈S◦

α,i
:t+1∈Bα,i

{α̃t+1,i}
)
.

The first equality is direct from Lemma 3 and Assumption (R2), while the second equality from (A.12).

For sign consistency in Bα,i, from (A.9), we require with probability approaching 1 that

0 < (α̂·,i)Bα,i
= (α̃·,i)Bα,i

− λα(h)Bα,i
− λα(g)Bα,i

,
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which holds true if both λα(h)Bα,i
and λα(g)Bα,i

are stochastically dominated by (α̃·,i)Bα,i
. By (A.7)

and (A.8), it suffices to show λα is stochastically dominated by mini∈[p] mint∈Bα,i
{α̃2

t,i}. This is direct by

combining Assumption (R2), Lemma 3, and

min
i∈[p]

min
t∈Bα,i

{α̃t,i} ≥ min
i∈[p]

min
t∈Bα,i

{α∗
t,i} −max

i∈[p]
max
t∈Bα,i

|α̃t,i − α∗
t,i|. (A.13)

This ends the proof of block consistency. It remains to show the consistency for the DAFL estimators.

To this end, note that for any i ∈ [p], t ∈ Bα,i,

α̂t,i − α∗
t,i = (α̂t,i − α̃t,i) + (α̃t,i − α∗

t,i) =: I1 + I2.

For I1, combining the KKT condition (A.9) and the subgradients from (A.7) and (A.8), we have

|I1| ≤ λα|uα,t,i + uα,t+1,i + γα,t,i| ≤
λα

mini∈[p] mint∈Bα,i
{α̃t,i}

≤ λα

mini∈[p] mint∈Bα,i
{α∗

t,i} −maxi∈[p] maxt∈Bα,i
|α̃t,i − α∗

t,i|
,

(A.14)

where the last inequality used (A.13). Using the fact that mini∈[p] mint∈Bα,i
{α∗

t,i} = OP (1) and Assump-

tion (R2), we have

λα = oP

(
min
i∈[p]

min
t∈Bα,i

{α∗2
t,i}
)
= oP

(
min
i∈[p]

min
t∈Bα,i

{α∗
t,i}
)
,

so that in (A.14), |I1| = oP (1). On the other hand, consider I2. For any t ∈ [T ] and i ∈ Bα,i, from the

proof of Theorem 2, we can decompose

α̃t,i − α∗
t,i = q−1E

⊺

t,i·1q − q−1 min{Et1q}

= q−1(Ae,r)
⊺

i·Fe,tA
⊺

e,c1q + q−1

q∑

j=1

Σε,ijεt,ij − q−1 min{Et1q}.
(A.15)

Since ‖Ae,r‖1, ‖Ae,c‖1 = O(1) from Assumption (E1), we have q−1(Ae,r)
⊺

i·Fe,tA
⊺

e,c1q = OP (q
−1). More-

over, E(q−1(Σǫ ◦ ǫt)1q) = 0 and Var(q−1
∑q

j=1 Σǫ,ijǫt,ij) = q−2
∑q

j=1 Σ
2
ǫ,ij = O(q−1), implying that

|q−1((Σǫ ◦ ǫt)1q)i| = OP (q
−1/2). We also have q−1 min{Et1q} = OP (q

−1/2
√
log(p)) from the proof of

Theorem 2. Finally, let γ2
α,i := limq→∞ q−1

∑q
i=1 Σ

2
ǫ,ij , then using Theorem 1 in Ayvazyan and Ulyanov

(2023), we have q−1/2
∑q

j=1 Σǫ,ijǫt,ij
D−→ N (0, γ2

α,i) and hence |q−1
∑q

j=1 Σε,ijεt,ij | = OP (q
−1/2). We may

now conclude from (A.15) that |I2| = OP (q
−1/2

√
log(p)). Hence finally,

|α̂t,i − α∗
t,i| = |I1 + I2| = oP (1),
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which completes the proof of the theorem. �

A.2 Auxiliary results and proofs

Proof of Corollary 3. It is directly from Theorem 2.2 and Theorem 2.3. �

Proof of Corollary 5. Result 1 is direct from Theorem 4, while result 2 is immediate by Lemma 3, given

the way we construct the final estimators. �

Proof of Proposition 1. For ease of notation, consider a time series {xt}Tt=1 with stay-in probabilities

πS and πB and an initial probability p1 = P(x1 = 0). Let pt := P(xt = 0) = E(1{xt = 0}). Then for any

t = 2, . . . , T , we have

pt+1 = ptπ
S + (1− pt)(1 − πB) = (1− πB) + (πS + πB − 1)pt,

which can be solved recursively as

pt = p∗ + (p1 − p∗)(π
S + πB − 1)t−1,

where p∗ = (1 − πB)/(2 − πS − πB). We hence choose p1 to be the same as p∗, and pt = p∗ is satisfied.

Furthermore, we shall compute the expected number of zeros over the whole series, showcased by

E(#{t : xt = 0}) =
T∑

t=1

pt = Tp∗.

Consequently, we can also compute the expected length of each sparse sub-block {tℓ+1, . . . , tℓ+mℓ}. Every

run of consecutive zeros is a geometric string, i.e., for k = 1, 2, . . . , P(block length = k) = (πS)k−1(1−πS).

Hence the unconditional expected length of a sparse sub-block is

E(length of a sparse sub-block) =

∞∑

k=1

k(1− πS)(πS)k−1 =
1

1− πS
.

This completes the proof of Proposition 1. �

As we adapt the setting of factor structure as in Cen and Lam (2025) and Lam and Cen (2024), we list

Lemma 1 in the following for further use and refer readers to Cen and Lam (2025) for the proof in detail.

Lemma 1 Let Assumptions (F1), (E1) and (E2) hold. Then

1. (Weak correlation of noise Et across different rows, columns and times). There exists some positive
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constant C < ∞ so that for any t ∈ [T ], i, j ∈ [p], h ∈ [q],

p∑

k=1

q∑

l=1

∣∣∣E[Et,ihEt,kl]
∣∣∣ ≤ C,

q∑

l=1

T∑

s=1

∣∣∣cov(Et,ihEt,jh, Es,ilEs,jl)
∣∣∣ ≤ C.

2. (Weak dependence between factor Ft and noise Et). There exists some positive constant C < ∞

so that for any j ∈ [p], i ∈ [q], and any deterministic vectors u ∈ Rkr and v ∈ Rkc with constant

magnitudes,

E

(
1

(qT )1/2

q∑

h=1

T∑

t=1

Et,jhu
⊺Ftv

)2

≤ C, E

(
1

(pT )1/2

p∑

h=1

T∑

t=1

Et,hiv
⊺F

⊺

t u

)2

≤ C.

3. (Further results on factor Ft). For any t ∈ [T ], all elements in Ft are independent of each other,

with mean 0 and unit variance. Moreover,

1

T

T∑

t=1

FtF
⊺

t
p−→ Σr := kcIkr

,
1

T

T∑

t=1

F
⊺

tFt
p−→ Σc := krIkc

,

with the number of factors kr and kc fixed as min{T, p, q} → ∞.

Analogously, we list (A.16) to (A.22) in Lemma 2 and see Cen and Lam (2025) for proofs. Further,

we prove the rate of
∑T

t=1 Rr,t defined in (A.5).

Lemma 2 (Bounding
∑T

t=1 Rr,t). Under Assumptions (F1), (L1), (E1) and (E2), it holds that

∥∥∥
T∑

t=1

CtE
⊺

t

∥∥∥
2

F
= OP (Tp

1+δr,1q), (A.16)

∥∥∥
T∑

t=1

EtE
⊺

t

∥∥∥
2

F
= OP (Tp

2q + T 2pq2), (A.17)

∥∥∥
T∑

t=1

1⊺

qE
⊺

t 1pEt1q1
⊺

p

∥∥∥
2

F
= OP (Tp

3q2 + T 2p2q2), (A.18)

∥∥∥
T∑

t=1

CtE
⊺

t 1p1
⊺

p

∥∥∥
2

F
= OP (Tp

3+δr,1q), (A.19)

∥∥∥
T∑

t=1

EtE
⊺

t 1p1
⊺

p

∥∥∥
2

F
= OP (Tp

4q + T 2p3q2), (A.20)

∥∥∥
T∑

t=1

Et1q1
⊺

qE
⊺

t

∥∥∥
2

F
= OP (Tp

2q2 + T 2pq2), (A.21)

∥∥∥
T∑

t=1

(1⊺

qE
⊺

t 1p)
21p1

⊺

p

∥∥∥
2

F
= OP (T

2p4q2), (A.22)
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∥∥∥
T∑

t=1

1⊺

pEtE
⊺

t 1p1p1
⊺

p

∥∥∥
2

F
= OP (Tp

6q + T 2p5q2). (A.23)

Thus, with Rr,t defined in (A.5), we have

∥∥∥
T∑

t=1

Rr,t

∥∥∥
2

F
= OP (Tp

2q + T 2pq2).

Lemma 3 Let Assumption (IC1), (E1), (E2), and (E3) hold. For each i ∈ [p], define the notation

α∗
·,i = (α∗

1,i, . . . , α
∗
T,i)

⊺ and α̃·,i = (α̃1,i, . . . , α̃T,i)
⊺, then we have

max
i∈[p]

∥∥(α̃·,i)Sα,i

∥∥
max

= OP

{
q−1/2 log1/2

(
p

p∑

i=1

|Sα,i|
)}

,

where (α̃·,i)Sα,i
denotes the vector of α̃·,i with indices restricted on Sα,i, i.e., the vector consisting of

{α̃t,i}t∈Sα,i
. Let (α̃·,i −α∗

·,i)Bα,i
be similarly defined by restricting indices on the set Bα,i. Then we have

max
i∈[p]

∥∥(α̃·,i −α∗
·,i)Bα,i

∥∥
max

= OP

{
q−1/2 log1/2

(
p

p∑

i=1

|Bα,i|
)}

.

Proof of Lemma 3. To show the first result, from (2.1) and Condition (IC1), we have for any i ∈ [p],

(Xt1q)i =
(
1p(qµt + 1⊺

qβ
∗
t ) + qα∗

t +Et1q

)
i
= qµt + 1⊺

qβ
∗
t + qα∗

t,i + 1⊺

qEt,i·,

so that using (2.2), it holds for any t ∈ [T ],

(α̃·,i)t ≡ α̃t,i = q−1(Xt1q)i − q−1 min{Xt1q}

= µt + q−11⊺

qβ
∗
t + α∗

t,i + q−11⊺

qEt,i· − min
j∈[p]

{
µt + q−11⊺

qβ
∗
t + α∗

t,j + q−11⊺

qEt,j·

}

= α∗
t,i + q−11⊺

qEt,i· − min
j∈[p]

{
α∗
t,j + q−11⊺

qEt,j·

}
= α∗

t,i + q−11⊺

qEt,i· − min
j∈[p]

{
q−11⊺

qEt,j·

}
,

(A.24)

where the last equality used Assumption (IC1). From (A.24), we have

∥∥(α̃1,i − α∗
1,i, . . . , α̃T,i − α∗

T,i)
⊺

Sα,i

∥∥
max

= max
t∈Sα,i

∣∣q−11⊺

qEt,i· − min
j∈[p]

{
q−11⊺

qEt,j·

}∣∣

≤ max
t∈Sα,i

∣∣q−11⊺

qEt,i·

∣∣+ max
t∈Sα,i

max
j∈[p]

∣∣q−11⊺

qEt,j·

∣∣ ≤ 2 max
t∈Sα,i

max
j∈[p]

∣∣q−11⊺

qEt,j·

∣∣.
(A.25)

For any j ∈ [p], t ∈ [T ], by Assumption (E1) and (E2),

Et,jh = A
⊺

e,r,j·

(∑

w≥0

ae,wXe,t−w

)
Ae,c,h· +Σǫ,jh

(∑

g≥0

aǫ,gXǫ,t−g,jh

)
,
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so that we have

1⊺

qEt,j· =

q∑

h=1

Et,jh = A
⊺

e,r,j·

(∑

w≥0

ae,wXe,t−w

) q∑

h=1

Ae,c,h· +

q∑

h=1

Σǫ,jh

(∑

g≥0

aǫ,gXǫ,t−g,jh

)
.

By the sparsity of Ae,c from Assumption (E1), and Assumption (E2) and (E3), we conclude that the first

term above is a zero-mean sub-Gaussian random variable with variance proxy of constant order. Similarly,

the second term above is also zero-mean sub-Gaussian except that the variance proxy is of order q, and

independent of the first term. Thus, q−11⊺

qEt,j· ∼ subG(C/q) for some arbitrary constant C > 0, and

hence for any ε > 0 we have

P

(
max
i∈[p]

max
t∈Sα,i

max
j∈[p]

∣∣q−11⊺

qEt,j·

∣∣ > ε
)
≤ 2 exp

{
log
(
p

p∑

i=1

|Sα,i|
)
− qε2/2C

}
,

implying maxi∈[p] maxt∈Sα,i
maxj∈[p]

∣∣q−11⊺

qEt,j·

∣∣ = OP

{
q−1/2 log1/2

(
p
∑p

i=1 |Sα,i|
)}

. Together with the

equation (A.25) and the fact that α∗
t,i = 0 for any i ∈ [p], t ∈ Sα,i, we conclude the first result of Lemma 3.

The remaining result of the lemma can be shown by repeating all previous arguments, except that α∗
t,i is

non-zero in (A.24). This completes the proof of Lemma 3. �
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