

ST109 Class 10 of Week 10

Kaixin Liu¹

¹PhD Student in Statistics, LSE

Dec 5, 2024

Table of Contents

1 Discrete Multivariate Random Variable

Outline 2 / 8

Joint Probability Function

Suppose that X and Y are discrete random variables.

Joint Probability Function

$$f_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$$

Properties of Joint PF

- **1.** $f(x,y) \ge 0$ for all (x,y)
- **2.** $\sum_{x} \sum_{y} p(x, y) = 1$

A Univariate View

Marginal Distribution

$$f_X(x) = \sum_y f(x,y)$$
 $f_Y(y) = \sum_x f(x,y)$

Expectation and Variance

$$\mathbb{E}(X) = \sum_{x} x f_X(x) \qquad \mathbb{E}(Y) = \sum_{y} y f_Y(y)$$

$$var(X) = \sum_{x} x^2 f_X(x) - [\mathbb{E}(X)]^2 \qquad var(Y) = \sum_{y} y^2 f_Y(y) - [\mathbb{E}(Y)]^2$$

A Multivariate View

Conditional Probability Function

The conditional distribution of Y given X = x is the discrete probability distribution with the pf:

$$f_{Y|X}(y \mid x) = \mathbb{P}(Y = y \mid X = x) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(X = x)} = \frac{f_{X,Y}(x,y)}{f_{X}(x)}$$

for any value y. Similar for the conditional pf of X given Y = y:

$$f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

Conditional Expectation and Conditional Variance

$$\mathbb{E}_{Y\mid X}(Y\mid x) = \sum_{y} y f_{Y\mid X}(y\mid x) \qquad \mathbb{E}_{X\mid Y}(X\mid y) = \sum_{x} x f_{X\mid Y}(x\mid y)$$

A Multivariate View (Cont.)

Covariance

Measures the strength of a linear association between X and Y:

$$cov(X, Y) = \mathbb{E}[X - \mathbb{E}(X)][Y - \mathbb{E}(Y)] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Properties of Covariance

- 1. cov(c, X) = 0, where c is a constant
- $2. \, \operatorname{cov}(aX + b, cY + d) = ac \operatorname{cov}(X, Y)$
- **3.** cov(X + Y, Z) = cov(X, Z) + cov(Y, Z), where Z is a random variable

A Multivariate View (Cont.)

Correlation

Also measures the strength of a linear association between X and Y, but standardized:

$$corr(X, Y) = \frac{cov(X, Y)}{\sqrt{var(X)var(Y)}}$$

Properties of Correlation

- 1. $corr(X, Y) \in [-1, 1]$
- **2.** corr(c, X) = 0, where c is a constant
- 3. corr(aX + b, cY + d) = sign(ac) corr(X, Y), where $sign(\cdot)$ takes the sign of (\cdot)
- **4.** $\operatorname{corr}(X + Y, Z) \neq \operatorname{corr}(X, Z) + \operatorname{corr}(Y, Z)$ in most case

7 / 8

A Multivariate View (Cont.)

Interpretation of Correlation

- ▶ If corr(X, Y) = 1 (or -1), then X is a linear function of Y, i.e. X = aY + b, with a > 0 (or a < 0).
- ▶ If corr(X, Y) > 0 (or < 0), then X and Y are positively (or negatively) correlated.
- ▶ If corr(X, Y) = 0, then X and Y are uncorrelated.

Remark!!

 $\mathsf{Independent} \implies \mathsf{Uncorrelated}$

Uncorrelated ⇒ Independent

that is, independence is a stronger argument than correlation.