

ST109 Class 10 of Week 8

 ${\rm Kaixin}\ {\rm Liu}^{1}$ $^{1}{\rm PhD}\ {\rm Student}\ {\rm in}\ {\rm Statistics},\ {\rm LSE}$

Nov 21, 2024

Discrete Uniform Distribution

Definition

 \boldsymbol{X} has a discrete uniform distribution if all of these values have the same probability, i.e.:

$$\mathbb{P}(X = x) = \begin{cases} 1/k, & x = 1, \dots, k \\ 0, & \text{otherwise} \end{cases}$$

Mean & Variance

$$\mathbb{E}(X) = \sum_{x=1}^{k} x \, p(x) = \frac{1+2+\dots+k}{k} = \frac{k+1}{2}$$

$$\mathbb{E}(X^2) = \sum_{x=1}^{k} x^2 p(x) = \frac{1^2+2^2+\dots+k^2}{k} = \frac{(k+1)(2k+1)}{6}$$

$$\text{var}(X) = \mathbb{E}(X^2) - [(\mathbb{E}(X))^2] = \frac{k^2-1}{12}$$

Quick Review

2 / 5

Bernoulli Distribution

Definition

 $X\sim {\sf Bernoulli}(p)$ if X takes the value 1 with probability p and the value 0 with probability q=1-p, i.e.:

$$\mathbb{P}(X=x) = \begin{cases} p^{x}(1-p)^{1-x}, & x \in \{0,1\}\\ 0, & \text{otherwise} \end{cases}$$

Mean & Variance

$$\mathbb{E}(X) = p$$

 $\operatorname{\mathsf{var}}(X) = p(1-p)$

Moment Generating Function

$$M_X(t) = \sum_{x=0}^{1} e^{tx} p(x) = (1-p) + pe^t$$

Quick Review 3 / 5

Binomial Distribution

Definition

 $X \sim \text{Binomial}(n, p)$ if X is the number of successes in a sequence of n independent Bernoulli trial with success probability p, i.e.:

$$\mathbb{P}(X = x) = \begin{cases} \binom{n}{x} p^{x} (1 - p)^{n - x}, & x = 0, \dots, n \\ 0, & \text{otherwise} \end{cases}$$

Mean & Variance

$$\mathbb{E}(X) = np$$

 $\mathsf{var}(X) = np(1-p)$

Moment Generating Function

$$M_X(t) = \sum_{x=0}^{1} e^{tx} p(x) = ((1-p) + pe^t)^n$$

Quick Review 4 / 5

Poisson Distribution

Definition

 $X \sim \mathsf{Poisson}(\lambda)$ if X expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate λ and independently of the time since the last event, i.e.:

$$\mathbb{P}(X = x) = \begin{cases} e^{-\lambda} \lambda^x / x!, & x = 0, 1, \dots \\ 0, & \text{otherwise} \end{cases}$$

Mean & Variance

$$\mathbb{E}(X) = \operatorname{var}(X) = \lambda$$

Moment Generating Function

$$M_X(t) = e^{\lambda(e^t-1)}$$

Quick Review

5 / 5