ST326 Week 5

Kaixin Liu¹

¹PhD Student in Statistics, LSE

Oct 31, 2025

Table of Contents

1 GARCH model for return data

GARCH process

Volatility clustering of financial time series is more persistent than what an ARCH model can capture in general, in the sense that the theoretical autocorrelation of a squared ARCH(p) process with small/moderate value of p is often less than that for real data in practice.

Definition (GARCH(p,q) process)

The generalised ARCH model of order p, q, or GARCH(p, q), is defined by

$$x_t = \sigma_t \varepsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 x_{t-1}^2 + \dots + \alpha_p x_{t-p}^2 + \beta_1 \sigma_{t-1}^2 + \dots + \beta_q \sigma_{t-q}^2,$$

where $\{\varepsilon_t\} \sim IID(0,1)$ with $\alpha_p > 0$ and $\alpha_i \geq 0, \beta_j \geq 0$ for i < p, j < q, and $\sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i) < 1$.

Fitting a GARCH model with Gaussian innovations

Assume Gaussian innovations $\varepsilon_t \sim \text{i.i.d. } N(0,1)$. We then have

$$x_t \mid \mathcal{F}_{t-1} \sim N(0, \sigma_t).$$

Then, consider a standard decomposition of densities:

$$f(x_1, \dots, x_T) = f(x_T | x_{T-1}, \dots, x_1) f(x_{T-1} | x_{T-2}, \dots, x_1) \cdots$$
$$= \left(\prod_{t=p+1}^T \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left(-\frac{x_t^2}{2\sigma_t^2}\right) \right) \cdot f(x_p, \dots, x_1).$$

To maximise the joint density is to maximise

$$\prod_{t=p+1}^{T} \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left(-\frac{x_t^2}{2\sigma_t^2}\right),\,$$

where values of σ_t^2 for $t=p-q+1,\ldots,p$ are usually initialised as $\sigma_t^2=x_t^2$.