ST326 Week 7

Kaixin Liu¹

¹PhD Student in Statistics, LSE

Nov 14, 2025

Table of Contents

1 Machine learning approach in predicting return for FTSE100

2 Technical details

Outline 2 / 8

Table of Contents

1 Machine learning approach in predicting return for FTSE100

2 Technical details

Concept and pipeline of ML

Machine learning

Detect/Learn certain "signals" from data by training a "machine" – a class of model which can depend on various **tuning parameters**. Fine tune the machine by twitching the tuning parameters until an optimization criterion is reached. In order to avoid **overfitting**, divide data into three **mutually exclusive** sets: training, validation and test set.

- 1. Define the prediction problem.
- Data engineering and preprocessing.
- **3.** Choose a model family.
- **4.** Training / validation / test split.
- 5. Evaluation and interpretation.

ML pipeline

- **1. Define the prediction problem.** Predict Y_{t+1} (FTSE return) using information available at time t.
- 2. Data engineering and preprocessing.
 - ► Align calendars of all indices. Missing days get filled with random small returns; everything standardised to variance 1.
 - Volatility adjustment using exponential filtering.

$$\sigma_t^2 = (1 - \lambda)x_{t-1}^2 + \lambda \sigma_{t-1}^2.$$

(This is actually a simple ML model for volatility.)

- 3. Choose a model family.
 - Single-index / multi-index models as a way to reduce dimension (project high-dimensional \mathbf{z}_t onto a low-dimensional index $\mathbf{u}^{\top}\mathbf{z}_t$.
 - But for this course a linear regression model is settled, with rolling windows.
 - ► To deal with high dimensionality or multicollinearity, variable screening or penalised regression can be implemented.

ML pipeline (Cont.)

4. Training / validation / test split.

- ▶ Training: estimate regression parameters (and volatility model) for each candidate D, λ .
- ▶ Validation: for each candidate *D*, re-run the rolling strategy on validation data and compute Sharpe ratio as performance measure.
- ▶ Test: once picked D, λ , evaluate again on the held-out test set to assess out-of-sample performance.

(Classic ML story: don't judge your model by training performance.)

Table of Contents

Machine learning approach in predicting return for FTSE100

2 Technical details

Ridge regression

Consider the original OLS problem in Step 3, which is to solve

$$\widehat{\alpha}_D(t) = \arg\min_{\alpha} \|\mathbf{Y} - \mathbf{Z}\alpha\|^2.$$

To restrict the magnitudes of $\alpha_D(t)$, we can solve

$$\min_{\alpha} \|\mathbf{Y} - \mathbf{Z}\alpha\|^2$$
, subject to $\|\alpha\|^2 \le c$,

where c > 0. Using Lagrange multiplier, the above problem is equivalent to

$$\min_{\alpha} \left\{ \|\mathbf{Y} - \mathbf{Z}\alpha\|^2 + \delta \|\alpha\|^2 \right\}$$

for some $\delta > 0$. Solving this, we get

$$\widehat{\boldsymbol{\alpha}}_{\delta} = (\mathbf{Z}^{\top}\mathbf{Z} + \delta\mathbf{I}_{p})^{-1}\mathbf{Z}^{\top}\mathbf{Y}.$$

8 / 8