ST326 Week 9

Kaixin Liu¹

¹PhD Student in Statistics, LSE

Nov 28, 2025

Table of Contents

1 LASSO

Portfolio Allocation

Outline 2 / 13

Table of Contents

1 LASSO

Portfolio Allocation

ASSO 3 / 13

LASSO

Consider again the original OLS problem, which is to solve

$$\widehat{\alpha} = \arg\min_{\alpha} \|\mathbf{Y} - \mathbf{Z}\alpha\|^2.$$

To restrict the magnitudes of α , we can solve

$$\min_{\alpha} \|\mathbf{Y} - \mathbf{Z}\alpha\|^2, \quad \text{subject to } \sum_{i=1}^{p} |\alpha_i| \leq c,$$

where c > 0. Using Lagrange multiplier, the above problem is equivalent to

$$\min_{\alpha} \left\{ \|\mathbf{Y} - \mathbf{Z}\alpha\|^2 + \delta \sum_{i=1}^{p} |\alpha_i| \right\}$$

for some $\delta > 0$.

LASSO 4 / 13

LASSO (Cont.)

To illustrate the variable selection ability of LASSO, consider p=2, with $\boldsymbol{\alpha}=(\alpha_1,\alpha_2)^{\top}$. Assuming $\widehat{\boldsymbol{\alpha}}=(\mathbf{Z}^{\top}\mathbf{Z})^{-1}\mathbf{Z}^{\top}\mathbf{Y}$ exists, then $\|\mathbf{Y}-\mathbf{Z}\boldsymbol{\alpha}\|^2=c$ for some constant c>0 represents an ellipse on the α_1 - α_2 plane, with center at $\widehat{\boldsymbol{\alpha}}$.

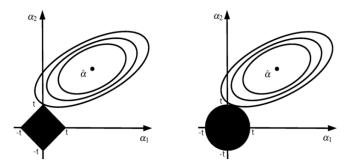


Figure: Left: For Lasso. Right: For ridge regression. The solutions are when then elliptical contours touch the diamond (Lasso) or the circle (ridge regression).

LASSO 5 / 1

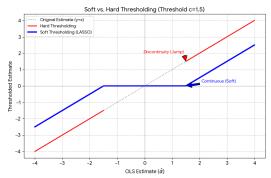
LASSO (Cont.)

If $\mathbf{Z}^{\top}\mathbf{Z} = n\mathbf{I}_p$, then we can show that the Lasso estimator is

$$\widetilde{\alpha}_j = \widehat{\alpha}_j \max \left\{ 0, 1 - \frac{\delta/2n}{|\widehat{\alpha}_j|} \right\} =: f_{\delta/2n}(\widehat{\alpha}_j),$$

where $f_c(x)$ is called a soft-thresholding function with parameter c, that

$$f_c(x) = x \max \left\{ 0, 1 - \frac{c}{|x|} \right\}.$$



LASSO 6 / 13

Table of Contents

LASSO

p-risky assets

Given a target return μ^* , the general problem we want to solve is

$$\min_{\mathbf{w}} \mathbf{w}^{\top} \mathbf{\Sigma} \mathbf{w} \qquad \text{s.t. } \mathbf{w}^{\top} \mathbf{1}_{\rho} = 1, \quad \mu^* \leq \mathbf{w}^{\top} \boldsymbol{\mu}$$
 (3.1)

Theorem (Two Fund Theorem)

The solution to (3.1) is of the form

$$\mathbf{w}_{opt} = (1 - \alpha)\mathbf{w}_{mv} + \alpha\mathbf{w}_{mkt},$$

where

$$\mathbf{w}_{mv} = rac{\mathbf{\Sigma}^{-1} \mathbf{1}_p}{\mathbf{1}_p^{ op} \mathbf{\Sigma}^{-1} \mathbf{1}_p}, \qquad \mathbf{w}_{mkt} = rac{\mathbf{\Sigma}^{-1} \mu}{\mu^{ op} \mathbf{\Sigma}^{-1} \mathbf{1}_p}.$$

Determining α (*p*-risky assets, Cont.)

The portfolio \mathbf{w}_{opt} must satisfy the return constraint

$$\mathbf{w}_{opt}^{\top}\boldsymbol{\mu} = \boldsymbol{\mu}^*.$$

Substituting $\mathbf{w}_{opt} = (1 - \alpha)\mathbf{w}_{mv} + \alpha\mathbf{w}_{mkt}$ gives

$$\mu^* = (1 - \alpha) \mathbf{w}_{mv}^{\top} \boldsymbol{\mu} + \alpha \mathbf{w}_{mkt}^{\top} \boldsymbol{\mu}.$$

Solving for α yields

$$\alpha = \frac{\mu^* - \mathbf{w}_{mv}^{\top} \boldsymbol{\mu}}{\mathbf{w}_{mkt}^{\top} \boldsymbol{\mu} - \mathbf{w}_{mv}^{\top} \boldsymbol{\mu}}.$$

If $\mu^* \leq \mathbf{w}_{mv}^{\top} \boldsymbol{\mu}$, then the minimum-variance portfolio already satisfies the return requirement and $\alpha = 0$.

Economic Interpretation (*p*-risky assets, Cont.)

$$\mathbf{w}_{\textit{mv}} = \frac{\mathbf{\Sigma}^{-1}\mathbf{1}_{\textit{p}}}{\mathbf{1}_{\textit{p}}^{\top}\mathbf{\Sigma}^{-1}\mathbf{1}_{\textit{p}}}, \qquad \mathbf{w}_{\textit{mkt}} = \frac{\mathbf{\Sigma}^{-1}\boldsymbol{\mu}}{\boldsymbol{\mu}^{\top}\mathbf{\Sigma}^{-1}\mathbf{1}_{\textit{p}}}.$$

Every efficient portfolio is a combination of only two funds:

$$\mathbf{w}_{mv}$$
 and \mathbf{w}_{mkt} .

- ightharpoonup minimizes risk regardless of the target return.
- ightharpoonup w_{mkt} maximizes the Sharpe ratio (tangent portfolio in CAPM).
- ▶ Changing the target return μ^* only changes the mixing weight α .
- ▶ When μ is proportional to $\mathbf{1}_p$, $\mathbf{w}_{mkt} = \mathbf{w}_{mv}$ (assets have identical expected returns), and the return constraint becomes infeasible for $\mu^* > \mathbf{w}_{mv}^{\top} \boldsymbol{\mu}$.

p-risky assets + risk-free asset

Let r_f be the return of a risk-free asset. A portfolio now consists of $(w_0, \mathbf{w}^\top)^\top$ where w_0 is the weight on the risk-free asset and $\mathbf{w} \in \mathbf{R}^p$ allocates to the risky assets.

Since weights must sum to one,

$$w_0 + \mathbf{w}^{\top} \mathbf{1}_p = 1.$$

The efficient frontier problem becomes

$$\min_{\mathbf{w}_0,\mathbf{w}} \mathbf{w}^{\top} \mathbf{\Sigma} \mathbf{w}$$
 s.t. $w_0 + \mathbf{w}^{\top} \mathbf{1}_p = 1$, $\mu^* \leq w_0 r_f + \mathbf{w}^{\top} \mu$.

Eliminating w_0 yields the equivalent problem

$$\min_{\mathbf{w}} \mathbf{w}^{\top} \mathbf{\Sigma} \mathbf{w}$$
 s.t. $\mu^* - r_f \leq \mathbf{w}^{\top} (\mu - r_f \mathbf{1}_p)$.

Solution (p-risky assets + risk-free asset, Cont.)

If $r_f \ge \mu^*$, the optimal solution is trivially $\mathbf{w} = 0$: invest everything in the risk-free asset.

If $r_f < \mu^*$, the constraint binds, and solving the Lagrangian yields

$$\mathbf{w}_{opt} = \frac{\mathbf{\Sigma}^{-1}(\boldsymbol{\mu} - r_f \mathbf{1}_p)}{(\boldsymbol{\mu} - r_f \mathbf{1}_p)^{\top} \mathbf{\Sigma}^{-1}(\boldsymbol{\mu} - r_f \mathbf{1}_p)} (\boldsymbol{\mu}^* - r_f) = \mathbf{w}_{mkt}^0 (\boldsymbol{\mu}^* - r_f),$$

where the market portfolio of risky assets is

$$\mathbf{w}_{mkt}^0 = rac{\mathbf{\Sigma}^{-1}(\mu - r_f \mathbf{1}_p)}{\mathbf{1}_p^ op \mathbf{\Sigma}^{-1}(\mu - r_f \mathbf{1}_p)}.$$

Note that \mathbf{w}_{mkt}^0 is independent of μ^* and satisfies $\mathbf{1}_p^{\top}\mathbf{w}_{mkt}^0=1$.

Portfolio Allocation

12 / 13

One-Fund Theorem

Theorem (One-Fund Theorem)

With a risk-free asset available, every efficient portfolio can be expressed as a combination of:

(i) the risk-free asset, (ii) the market portfolio \mathbf{w}_{mkt}^0 .

That is,

Efficient portfolio =
$$w_0 r_f + (1 - w_0) \mathbf{w}_{mkt}^0$$
.

This differs from the two-fund theorem: only one risky fund is needed.

Portfolio Allocation

13 / 13