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About me

Education:

▶ Second year PhD student.

▶ Supervision under Prof. Clifford Lam and Dr. Yunxiao Chen.

▶ Research interests in: High-dimensional time series analysis; Latent
factor model with vector, matrix and tensor time series.

▶ Obtained BEcon in major of Economic Statistics from Beihang Uni-
versity (formerly known as Beijing University of Aeronautics and As-
tronautics) in 2023, and MSc in major of Statistics (Financial Statis-
tics) from LSE in 2024.

How to reach out:

▶ Email Address: K.Liu31@lse.ac.uk

▶ Office: Columbia House 5.02

▶ Office Hour: TBD

▶ Homepage: https://www.lse.ac.uk/people/kaixin-liu
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Autocovariance and autocorrelation (general case)

For a general time series {xt}, define the mean function

µt = E(xt),

and the autocovariance function (two-time indices)

γ(s, t) = Cov(xs , xt) = E
[
(xs − µs)(xt − µt)

]
.

The autocorrelation function is

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
∈ [−1, 1].

Interpretation: ρ(s, t) measures linear predictability of xt using only xs .
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Strict (strong) stationarity

Definition (Strict / strong stationarity)

{xt} is strictly stationary if for any m > 0, any time points t1, . . . , tm,
and any shift h ∈ Z,

P(xt1 ≤ c1, . . . , xtm ≤ cm) = P(xt1+h ≤ c1, . . . , xtm+h ≤ cm)

for all real constants c1, . . . , cm.

Immediate implications:

▶ (m = 1) all xt share the same marginal distribution ⇒ if µt exists
then µt ≡ µ.

▶ (m = 2) if second moments exist, then γ(s, t) = γ(s + h, t + h)
(depends only on lag).
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Weak (second-order) stationarity

Definition (Weak / second-order stationarity)

{xt} is weakly stationary if

▶ E(xt) = µ < ∞ (constant over t), and

▶ γ(s, t) depends on s, t only through |s − t|, with Var(xt) = γ(t, t) <
∞.

Notation simplification under stationarity:

γ(h) = Cov(xt+h, xt).

For discrete/equally spaced series, define the ACVS

sτ = Cov(xt+τ , xt), τ ∈ Z.
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ACF for a stationary time series

For a weakly stationary series, the ACF is

ρ(h) =
γ(h)

γ(0)
.

For integer lags (discrete time),

ρτ =
sτ
s0
, s0 = γ(0) = Var(xt).

So: ACVS = covariance by lag; ACF = ACVS normalised by variance.
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When weak stationarity implies strict stationarity

Definition (Gaussian process)

{xt} is a Gaussian process if for any n and any time points t1, . . . , tn, the
vector (xt1 , . . . , xtn) is multivariate normal with finite means and variances.

Key fact

A multivariate normal distribution is fully characterised by its mean vector
and covariance matrix.

Theorem (Weakly stationary Gaussian ⇒ strictly stationary)

If {xt} is a Gaussian process and weakly stationary, then {xt} is strictly
stationary.
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Positive semidefiniteness of the ACVS

Definition (Positive semidefinite sequence)

A sequence {sτ} is positive semidefinite if for any time points t1, . . . , tn
and any real numbers a1, . . . , an (not all zero),

n∑
i=1

n∑
j=1

sti−tj aiaj ≥ 0.

Why it must hold for stationary time series

If {sτ} is the ACVS of a stationary {xt}, then

0 ≤ Var
( n∑

i=1

aixti

)
=

n∑
i=1

n∑
j=1

sti−tj aiaj ,

hence {sτ} is positive semidefinite.

Conversely: any positive semidefinite sequence can be an ACVS of some station-
ary process.
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