Chapter 10 Mathematical Statistics

Parametric v.s. Non-Parametric, Donimated Family, Exponential Family.


Suppose a probability space $(\Omega,\mathcal{F},\mathbb{P})$. The data set is called a sample from a population described by $\mathbb{P}$. $\mathbb{P}$ is partially unknown. The goal is to deduce properties of $\mathbb{P}$ from the available sample. In particular, the data set $(X_1,X_2,\dots,X_n)$ with sample space $\Omega$ are obtained as i.i.d. observations. Thus, we can define $\mathbf{X}=(X_1,\dots,X_n)$ on $\prod_{i=1}^n(\mathbb{R},\mathcal{B},\mathbb{P})$. E.g., $\bar{X},S^2$ are product measurable.

Parametric v.s. Non-Parametric: A set of probability measures $(\mathbb{P}_\theta)$ on $(\Omega,\mathcal{F})$ indexed by $\theta\in\Theta$ is said to be a parametric family if $\Theta\subset\mathbb{R}^d$ for some $d$ and $\mathbb{P}_\theta$ is a known probability measure.

  • $(\mathbb{P}_\theta)$ is said to be identifiable if $\theta_1\neq\theta_2\implies\mathbb{P}_{\theta_1}\neq\mathbb{P}_{\theta_2}$.
  • Assumption: All parametric families are identifiable.

Definition 1 (Donimated Family)

Let $\mathcal{P}$ be a family of probability measures and $\nu$ a $\sigma$-finite measure on $(\Omega,\mathcal{F})$. If $\mathbb{P}«\nu$, i.e. $\mathbb{P}(A)=\int_{\Omega}X_{\mathbb{P}}\mathbb{1}_A\mathrm{d}\nu$ for all $A\in\mathcal{F}$ and some measurable $X_\mathbb{P}$ for all $\mathbb{P}\in\mathcal{P}$, then $\mathcal{P}$ is said to be dominated by $\nu$. In this case, $\forall\mathbb{P},\exists f_\mathbb{P}$, s.t. $X_\mathbb{P}=f_\mathbb{P}(X)=\partial\mathbb{P}/\partial\nu$.

Example of donimated family

$k$-dimensional normal distribution $N_k(\boldsymbol{\mu},\Sigma),\boldsymbol{\mu}\in\mathbb{R}^k,\Sigma\in\mathcal{M}_k$. This family is dominated by the Lebesgue measure on $\mathcal{B}^k$.

Definition 2 (Exponential Family)

$\mathcal{P}=\{\mathbb{P}_\theta:\theta\in\Theta\}«\nu$ is called an exponential family if

\[f_{\theta}(x)=\frac{\mathrm{d}\mathbb{P}_\theta(x)}{\mathrm{d}\nu}=\exp\left\{\eta(\theta)\cdot T(x)-\xi(\theta)\right\}h(x),\]

where $\eta:\Theta\to\mathbb{R}^m,T:\mathbb{R}^n\to\mathbb{R}^m,h:\Omega\to\mathbb{R}_+$, $\xi$ is a normalization constant, and $\cdot$ means dot product.

Examples of exponential family

  • $k=1$

    • $\nu=\text{Leb}\mid_{(0,\infty)},f_{\lambda}(x)=\lambda e^{-\lambda x}=\exp\{(-\lambda)x+\log\lambda\}$
    • $\nu=\text{counting measure on }\mathbb{N}$, $f_\theta(x)=e^{-\lambda}\frac{\lambda^x}{x!}=\exp\{x\log\lambda-\lambda\}\frac{1}{x!}$
  • $k=2$

    \[\begin{aligned} f_{\mu,\sigma^2}(x)&=\frac{1}{\sqrt{2\pi}\sigma}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}\\ &=\frac{1}{\sqrt{2\pi}\sigma}\exp\left\{\frac{\mu}{\sigma^2}x-\frac{x^2}{2\sigma^2}-\frac{\mu^2}{2\sigma^2}\right\}\\ &=\frac{1}{\sqrt{2\pi}}\exp\left\{\frac{\mu}{\sigma^2}x-\frac{x^2}{2\sigma^2}-\frac{\mu^2}{2\sigma^2}-\log\sigma\right\} \end{aligned}\]

    where $T(x)=(x,x^2),\eta(\theta)=(\mu/\sigma^2,-1/(2\sigma^2)),\xi(\theta)=\mu^2/(2\sigma^2)+\log\sigma$.

  • Cauchy density with center $\mu$, and $\nu=\text{Leb}(\mathbb{R})$: NOT an exponential family, but a location family:

    \[f_\mu(x)=\frac{1}{\pi}\frac{1}{1+(x-\mu)^2}\]